

Guía Docente:

HISTORIA DE LA BIOQUÍMICA

FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2023-2024

Guía Docente: Histor

Historia de la Bioquímica

I.- IDENTIFICACIÓN

NOMBRE DE LA ASIGNATURA: Historia de la Bioquímica

NÚMERO DE CRÉDITOS: 6

CARÁCTER: Optativa

MATERIA: Aplicaciones Bioquímicas 1

MÓDULO: Avanzado

TITULACIÓN: Grado en Bioquímica SEMESTRE/CUATRIMESTRE: Segundo (cuarto curso)

DEPARTAMENTO/S: Bioquímica y Biología Molecular

PROFESOR/ES RESPONSABLE/S:

Grupo A					
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	AMADOR DE HARO RAMOS Bioquímica y Biología Molecular QA-451 aharo@ucm.es			

II.- OBJETIVOS

■ OBJETIVO GENERAL

Proporcionar a una visión de la Bioquímica y de la Biología Molecular desde una perspectiva histórica.

■ OBJETIVOS ESPECÍFICOS

Análisis de la evolución de conceptos y métodos bioquímicos a lo largo de la historia, así como de aquellos científicos y escuelas científicas que contribuyeron al nacimiento y desarrollo de la Bioquímica.

III.- CONOCIMIENTOS PREVIOS Y RECOMENDACIONES

■ CONOCIMIENTOS PREVIOS:

■ RECOMENDACIONES:

IV.- CONTENIDOS

■ BREVE DESCRIPCIÓN DE LOS CONTENIDOS

Proto-Bioquímica. Nacimiento de la Bioquímica. Historia de metabolismo intermediario. Rutas metabólicas. Ciclos metabólicos. Historia de la comunicación química intercelular. Historia de la señalización celular. Historia de los mecanismos bioquímicos de regulación. Historia de las proteínas. Historia de los ácidos nucleicos. Los orígenes de la Bioquímica en España.

■ PROGRAMA:

- 1. Introducción. Proto-Bioquímica. La tradición griega y helenística. De la alquimia a la iatroquímica. Transmisión de los saberes clásicos a la Modernidad. Conceptos bioquímicos en la Modernidad y en la Ilustración. De Paracelso a Lavoisier.
- 2. El siglo XIX. Química orgánica estructural. Teoría celular. Teorías metabólicas de Von Liebig y Bernard. La controversia del vitalismo. Pasteur. De los fermentos a las enzimas.
- 3. Nacimiento de la Bioquímica. Escuelas de Bioquímica en la transición XIX-XX. El concepto de especificidad: Enzimas, receptores y anticuerpos. Desarrollo de la Bioquímica. Etapas.
- 4. Historia de metabolismo intermediario. Rutas metabólicas. Glucolisis. Ciclos metabólicos. Ciclo de Krebs. Trazadores metabólicos. El concepto de unidad bioquímica.
- 5. Historia de la comunicación química intercelular. Comunicación endocrina y sináptica. Mensajeros químicos. Clasificación de receptores.
- 6. Historia de la señalización celular. Segundos mensajeros. Mecanismos bioquímicos de transducción de información a través de membrana plasmática.
- 7. Historia de los mecanismos bioquímicos de regulación. Fosforilación-desfosforilación. Modulación alostérica.
- 8. Historia de las proteínas. Protoplasma. Teoría coloidal. Aminoácidos. Enlace peptídico. Estructura de las macromoléculas biológicas. La conformación de las proteínas.
- 9. Historia de los ácidos nucleicos. Naturaleza del material genético. La estructura de doble hélice. El Dogma Central de la Biología Molecular. El código genético. La Biología Molecular en relación con la Bioquímica.
- 10. Los orígenes de la Bioquímica en España. Edad de plata (1876-1936). ILE. JAE. La Química Biológica y la Química Fisiológica. Desde la creación del CSIC a la inauguración del CBM. Escuelas de Bioquímica en España.

V.- COMPETENCIAS

■ GENERALES:

o **CG12-MA5** Continuar sus estudios en áreas especializadas de las Biociencias Moleculares.

Guía Docente: Historia de la Bioquímica

ESPECÍFICAS:

o **CE2-ABI5** Analizar la evolución temporal de los conceptos y métodos de la

Bioquímica y la Biología Molecular.

■ TRANSVERSALES:

o **CT4-MA3** Trabajar en equipo, cooperando con otros estudiantes.

o CT2-MA4 Razonar de modo crítico.

o CT14-MA5 Desarrollar una motivación por la calidad.

o **CT9-MA6** Ser capaz de dar una charla breve a un auditorio no especializado

acerca de un tema de Bioquímica con posible impacto actual en

la sociedad.

VI. – HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos	
Clases teóricas	45	67,5	4,5	
Seminarios	3	4,5	0,3	
Tutorías/Trabajos dirigidos	2	3	0,2	
Preparación de trabajos y exámenes	3	22	1	
Total	53	97	6	

VII.- METODOLOGÍA

Las actividades presenciales de la asignatura se estructuran en clases de teoría, seminarios y tutorías.

En las **clases de teoría** el profesor dará a conocer al alumno el contenido de la asignatura. Se presentarán los conceptos teóricos y algunos hechos experimentales que permitan al alumno obtener una visión global y comprensiva de la asignatura. Al comienzo de cada tema se expondrán el contenido y objetivos principales de dicho tema. Al final del tema se podrán plantear nuevas propuestas que permitan interrelacionar contenidos ya estudiados con los del resto de la asignatura o con otras asignaturas.

Las **clases de seminarios y las de tutorías** tendrán como objetivo desarrollar y estructurar los conocimientos adquiridos.

VIII.- BIBLIOGRAFÍA

■ BÁSICA:

No se va a seguir un libro de texto concreto para el desarrollo de la asignatura. A continuación, se relacionan textos recomendados de carácter general. Al comienzo de cada tema se proporcionará bibliografía específica del mismo.

- o AA. VV.: "Historia de la Bioquímica", Real Academia de Ciencias Exactas, Físicas y Naturales, Madrid, 1985.
- o CORDÓN, F.: "Historia de la Bioquímica", Compañía Literaria, Madrid, 1997.
- o FRUTON, J.S.: "Proteins, Enzymes, Genes. The Interplay of Chemistry and Biology", Yale University, 1999.
- o HUNTER, G.H.: "Vital Forces: The Discovery of the Molecular Basis of Life", Academic, San Diego, CA, 2000.
- o LEICESTER, H.M.: "Development of Biochemical Concepts from Ancient to Modern Times", Harvard University, 1974.
- o MARTÍNEZ, A.: "El nacimiento de la Química de Proteínas", Nivola, Madrid, 2008.
- o MORANGE, M.: "A History of Molecular Biology", Harvard University, 1998.
- o NEEDHAM, J. (ed.): "La Química de la Vida", Fondo de Cultura Económica, México D.F., 1974.
- OLBY, R.: "El Camino hacia la doble hélice", Alianza, Madrid, 1991.
- o SANTESMASES, M.J. y MUÑOZ E.: "Establecimiento de la Bioquímica y la Biología Molecular en España", Fundación Ramón Areces, Madrid, 1997.
- o TEICH, M., NEEDHAM, D.: "A Documentary History of Biochemistry 1770-1940", Leicester University, 1992.
- o VALPUESTA, J.M.: "A la búsqueda del secreto de la vida. Una breve historia de la Biología Molecular", Hélice/CSIC, Madrid, 2008.

■ COMPLEMENTARIA:

- o FOUNDATIONS OF MODERN BIOCHEMISTRY (ORD, M.G., STOCKEN, L.A., eds.) JAI, London.
 - Vol. 1. Early Adventures in Biochemistry, 1995.
 - Vol. 2. Quantum Leaps in Biochemistry, 1996.
 - Vol. 3. Further Milestones in Biochemistry, 1997.
 - Vol. 4. More Landmarks in Biochemistry, 1998.
- COMPREHENSIVE BIOCHEMISTRY (FLORKIN, M., STOTZ, E.H., LASZLO, P., NEUBERGER, A., VAN DEENEN, L.L.M., SEMENZA, G., JAENICKE, R., SLATER, E.C., KLEINZELLER, A., eds.). Elsevier, Amsterdam, 1972-2008.
 - Vol. 30. Proto-Biochemistry. From Proto –Biochemistry to Biochemistry, 1972.
 - Vol. 31. History of the Identification of the Sources of Free Energy in Organisms, 1975.
 - Vol. 32. Early Studies on Biosynthesis, 1977.
 - Vol. 33 (A-B). The Unravelling of Biosynthetic Pathways, 1979.
 - Vol. 34A. Molecular Correlates of Biological Concepts, 1986.
 - Vol. 35-38, 40-44. Selected Topics in the History of Biochemistry (Personal Recollections I-IX), 1983-2005
 - Vol. 39. Exploring the Cell Membrane: Conceptual Developments, 1995.
 - Vol. 45, 46. Stories of Success (Personal Recollections X, XI), 2007, 2008.

Guía Docente:

Historia de la Bioquímica

IX.- EVALUACIÓN

Para la evaluación final es obligatoria la participación en las diferentes actividades propuestas. Para poder superar la asignatura será necesario que el alumno haya participado al menos en el 70% de las actividades presenciales.

El rendimiento académico del alumno y la calificación final de la asignatura se computarán de forma ponderada atendiendo a los siguientes porcentajes, que se mantendrán en todas las convocatorias:

■ EXÁMENES ESCRITOS:

60%

La evaluación de las competencias adquiridas en la parte teórica de la asignatura se llevará a cabo mediante la realización de un único examen final. El examen consistirá en preguntas sobre los conocimientos adquiridos durante el curso y/o el comentario de un texto extraído de una publicación sobre Bioquímica de carácter histórico.

■ TRABAJO PERSONAL:

30%

La evaluación del trabajo de aprendizaje realizado por el alumno considerará la destreza del alumno en la resolución de cuestiones, en la preparación de un trabajo y en la discusión de artículos científicos.

■ ASISTENCIA Y PARTICIPACIÓN EN LAS CLASES:

10%

La asistencia y la participación del alumno en todas las actividades se valorará positivamente en la calificación final. La falta de asistencia reiterada podrá penalizarse.

Siempre se respetará un plazo mínimo de siete días entre la publicación de cualquier calificación, si fuera el caso, y la fecha del examen final de la asignatura.

PLANIFICACIÓN DE ACTIVIDADES – CRONOGRAMA

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN	
Temas 1 a 3	Clases Teoría	12	1	18 C	4ª Semana	
Temas 1 a 5	Seminarios	1	1	1ª Semana		
Tema 4	Clases Teoría	6	1	5ª Semana	6ª Semana	
Temas 5 a 7	Clases Teoría	9	1	7ª Semana	9ª Semana	
Temas 5 a 7	Seminarios	1	1	/ Semana		
Tomos 9 v 0	Clases Teoría	9	1	10ª Camana	128 Camana	
Temas 8 y 9	Seminarios	1	1	10 ^a Semana	12 ^a Semana	
Tema 10	Clases Teoría	9	1	13ª Semana	15ª Semana	
	Tutoría	2	2	Semanas 7 ^a y 14 ^a		

RESUMEN DE LAS ACTIVIDADES

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total	C
Clases de teoría		Exposición de conceptos teóricos. Planteamiento de cuestiones.	Toma de apuntes, formulación y contestación de cuestiones.	Valoración de las respuestas a preguntas relacionadas con los conceptos teóricos explicados.		67,5	112,5	
Seminarios	CG12-MA5 CE2-ABI5	Aplicación de la teoría a la resolución de ejercicios y problemas.	Toma de apuntes. Realización de ejercicios. Formulación y contestación de cuestiones.	Valoración de la resolución de ejercicios prácticos.	3	4,5	7,5	40%
Tutorías	CT4-MA3 CT2-MA4 CT14-MA5 CT9-MA6	Dirección y supervisión del estudio y actividades del alumno. Planteamiento de cuestiones.	Resolución de las cuestiones planteadas.	Valoración del trabajo, exposición y desarrollo.	2	3	5	
Exámenes		Propuesta, vigilancia y corrección del examen. Calificación del alumno.	Preparación y realización.		3	22	25	60%

P: Presenciales; NP: no presenciales (trabajo autónomo); C: calificación