

QUÍMICA INORGÁNICA II

FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2022-2023

Química Inorgánica II

I.- IDENTIFICACIÓN

NOMBRE DE LA ASIGNATURA: Química Inorgánica II

NÚMERO DE CRÉDITOS: 12

CARÁCTER: Obligatoria

MATERIA: Química Inorgánica

MÓDULO: Fundamental

TITULACIÓN: Grado en Química SEMESTRE/CUATRIMESTRE: Anual (tercer curso) DEPARTAMENTO/S: Química Inorgánica

PROFESOR/ES RESPONSABLE/S:

Coordinador de la asignatura	Profesor: Departamento: Despacho: e-mail:	JOSEFA ISASI MARÍN Química Inorgánica QA-136 isasi@ucm.es
Coordinador del laboratorio	Profesor: Departamento: Despacho: e-mail:	JOSEFA ISASI MARÍN Química Inorgánica QA-136 isasi@ucm.es

	Teoría Grupo A				
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	JOSÉ LUIS PRIEGO BERMEJO Química Inorgánica QA-206 bermejo@ucm.es			
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	REGINO SÁEZ PUCHE Química Inorgánica QA-119 rsp92@ucm.es			

	Teoría Grupo B				
Teoría Seminario	Profesor: Departamento: Despacho: e-mail:	SANTIAGO HERRERO DOMÍNGUEZ Química Inorgánica QA-136A sherrero@ucm.es			
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	Mª LUISA LÓPEZ GARCÍA Química Inorgánica QA-107 marisal@ucm.es			

Química Inorgánica II

	Teoría Grupo C				
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	JOSÉ LUIS PRIEGO BERMEJO Química Inorgánica QA-206 bermejo@ucm.es			
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	SUSANA GARCÍA MARTÍN Química Inorgánica QA-120 sgmartin@ucm.es			

	Teoría Grupo D				
Teoría Seminario Tutoría	Profesora: Departamento: Despacho: e-mail:	Mª DEL CARMEN TORRALBA MARTÍNEZ Química Inorgánica QA-138 torralba@ucm.es			
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	DAVID AVILA BRANDE Química Inorgánica QA-118 davilabr@ucm.es			

	Teoría Grupo E			
Teoría Seminario Tutoría	Profesora: Departamento: Despacho: e-mail:	Mª JOSE MAYORAL MUÑOZ Química Inorgánica QA-225 mj.mayoral@ucm.es		
Teoría Seminario Tutoría	Profesora: Departamento: Despacho: e-mail:	ELENA ARROYO Y DE DOMPABLO Química Inorgánica QA-137 e.arroyo@ucm.es		

	Laboratorio QA141								
Grupo	Cuatri.	Profesor/a	Correo	Despacho Depar					
A1	1°	Miguel Cortijo	miguelcortijomontes@ucm .es	QA-210	QI				
	2° Khalid Boulahya 1° Rodrigo González	khalid@ucm.es	QA138B	QI					
A2	1°	Rodrigo González	rodgonza@ucm.es	QA216	QI				
112	2°	Elena Solana	elsolana@ucm.es	QA-119	QI				
A3	1°	Miguel Cortijo	miguelcortijomontes@ucm .es	QA-210	QI				
	2°	Elena Arroyo	e.arroyo@ucm.es	QA-137	QI				
A4	1°	Laura Abad	laabad03@ucm.es	QA-210	QI				

Química Inorgánica II

	2°	Khalid Boulahya	khalid@ucm.es	QA138B	QI
	1°		sherrero@ucm.es	QA-136A	QI
B1		Santiago Herrero	Ü	-	
	2°	M. Luisa López	marisal@ucm.es	QA-107A	QI
B2	1°	Laura Abad	laabad03@ucm.es	QA-210	QI
D2	2°	Almudena Torres	atorresp@ucm.es	QA-135	QI
В3	1°	Santiago Herrero	sherrero@ucm.es	QA-136A	QI
В	2°	M. Luisa López	marisal@ucm.es	QA-107A	QI
B4	1°	Carmen Martín	mariad80@ucm.es	QA-117A	QI
Di	2°	Raquel Cortes	rcortesg@ucm.es	QA-138A	QI
C1	1°	Cristián Cuerva	c.cuerva@ucm.es	QA-211	QI
	2°	Susana García	sgmartin@ucm.es	QA-120	QI
С2	1°	Laura Abad	laabad03@ucm.es	QA-210	QI
C2	2°	Elena Solana	elsolana@ucm.es	QA-119	QI
С3	1°	Cristián Cuerva	c.cuerva@ucm.es	QA-211	QI
63	2°	Khalid Boulahya	khalid@ucm.es	QA138B	QI
C4	1°	Laura Abad	laabad03@ucm.es	QA-210	QI
	2°	Elena Solana	elsolana@ucm.es	QA-119	QI
D1	1°	Rodrigo González	rodgonza@ucm.es	QA216	QI
Di	2°	Jesús Prado	jpradogo@ucm.es	QA-222	QI
D2	1°	Carmen Martín	mariad80@ucm.es	QA-117A	QI
D2	2°	Raquel Cortes	rcortesg@ucm.es	QA-138A	QI
D3	1°	Rodrigo González	rodgonza@ucm.es	QA216	QI
DJ	2°	Almudena Torres	atorresp@ucm.es	QA-135	QI
D4	1°	M.Carmen Torralba	torralba@ucm.es	QA-138	QI
	2°	Jesús Prado	jpradogo@ucm.es	QA-222	QI
E1	1°	Miguel Cortijo	miguelcortijomontes@ucm .es	QA-210	QI
	2°	Inmaculada Álvarez	ias@ucm.es	QA-108	QI
E2	1°	Cristián Cuerva	c.cuerva@ucm.es	QA-211	QI
	2°	Elena Arroyo	e.arroyo@ucm.es	QA-137	QI

Química Inorgánica II

II.- OBJETIVOS

■ OBJETIVO GENERAL

Se pretende que el alumno adquiera los conocimientos adecuados que le permitan conocer y relacionar la estructura, propiedades, reactividad y aplicaciones de los compuestos de los elementos metálicos.

Los estudiantes deben aprender procedimientos específicos de síntesis con la utilización del material y montajes adecuados, así como iniciarse en los aspectos básicos y en el manejo de distintos métodos de caracterización de los compuestos inorgánicos preparados.

■ OBJETIVOS ESPECÍFICOS

- o Desarrollar los aspectos fundamentales de la Química de Coordinación y Organometálica.
- o Desarrollar los aspectos fundamentales de la Química del Estado Sólido.
- Relacionar las propiedades de los elementos y de sus compuestos con la estructura que presentan.
- Utilizar procedimientos específicos de síntesis en la obtención de compuestos inorgánicos.
- Conocer los fundamentos y utilizar las técnicas más frecuentes de caracterización de compuestos inorgánicos.
- Reconocer la importancia de los compuestos inorgánicos de los elementos metálicos dentro de la Ciencia, y su importancia como materiales avanzados.

III.- CONOCIMIENTOS PREVIOS Y RECOMENDACIONES

■ CONOCIMIENTOS PREVIOS:

Características de los elementos y las tendencias generales de sus propiedades físicoquímicas tomando como base la tabla periódica. Aspectos básicos estructurales de especies moleculares y no moleculares. Características generales de la estructura electrónica de un metal, un semiconductor y un aislante. Procedimientos generales de síntesis de compuestos inorgánicos.

■ RECOMENDACIONES:

Se recomienda haber superado las asignaturas de Química General y Química Inorgánica I.

Química Inorgánica II

IV.- CONTENIDOS

■ BREVE DESCRIPCIÓN DE LOS CONTENIDOS:

Contenidos teóricos

Compuestos de coordinación: enlace, estereoquímica, propiedades espectroscópicas y magnéticas, reactividad. Compuestos organometálicos: aspectos básicos. Enlace metalmetal en compuestos de coordinación y organometálicos. Estructura, enlace, propiedades y reactividad de sólidos inorgánicos no moleculares. Óxidos y sulfuros de los elementos de transición. Silicatos y fosfatos.

Contenidos prácticos

Síntesis y caracterización de sólidos inorgánicos no moleculares y de compuestos de coordinación y organometálicos. Técnicas instrumentales de caracterización.

■ PROGRAMA:

TEÓRICO:

Bloque I Compuestos de coordinación.

Tema 1: Enlace en compuestos de coordinación.

- Teoría de orbitales moleculares: Compuestos octaédricos, tetraédricos y plano cuadrados.

Tema 2: Aspectos termodinámicos en los compuestos de coordinación.

- Constantes de equilibrio
- Efecto quelato, macrocíclico y criptato
- Interacción duro-blando

Tema 3: Estereoquímica.

- Factores que influyen en la estereoquímica de los compuestos de coordinación.

Números de coordinación bajos

Números de coordinación altos

Tema 4: Propiedades espectroscópicas.

- Teoría ajustada del campo del cristal
- Tipos de transiciones electrónicas: transiciones d-d y transiciones de transferencia de carga. Color
- Diagramas de-Tanabe-Sugano
- Interpretación de los espectros.

Tema 5: Propiedades magnéticas

- Comportamiento magnético de compuestos de coordinación de metales de transición.
- Momento de espín y aportación orbital. Acoplamiento espín-órbita

Tema 6: Reactividad de los compuestos de coordinación

- Tipos de reacciones.
- Reacciones de sustitución
- Reacciones de transferencia electrónica. Mecanismos de esfera externa y de esfera interna.

Tema 7: Conceptos básicos en compuestos organometálicos

- Clasificación
- Tipos de enlace metal-carbono
- Compuestos de metales de transición. Regla de los 18 electrones

Química Inorgánica II

Tema 8: Enlace metal-metal en compuestos de coordinación y organometálicos

- Compuestos dinucleares con enlace metal-metal.
- Clústeres con carbonilos. Regla del NAE. Reglas de Wade.
- Clústeres con ligando haluros

Bloque II Sólidos inorgánicos no moleculares

Tema 9: Reactividad de sólidos. Tipos de reacciones

- Reacciones sólido-sólido: mecanismos
- Reacciones sólido-líquido
 - Reacciones de intercalación
 - Reacciones de intercambio iónico
- Reacciones sólido-gas
 - Reacciones de transporte
- Crecimiento de cristales

Tema 10: Introducción a la estructura electrónica de los sólidos.

- Información que aportan los métodos espectroscópicos.
- Diagramas de bandas. Solapamiento de los orbitales en el cristal. Efecto del potencial periódico de la red. Propiedades que dependen de la densidad de estados.

Tema 11: Óxidos de los elementos metálicos.

- Relaciones estructura-propiedades. Aplicación del modelo de bandas de Goodenough al estudio de los óxidos con estequiometría MO, M₂O₃, MO₂ y MO₃. Aplicaciones. No estequiometría en óxidos binarios.
- Óxidos mixtos: características estructurales ABO₃ (Ilmenitas y perovskita), AB₂O₄, (espinela)
- Relaciones estructura-propiedades: Propiedades electrónicas en óxidos tipo perovskita y espinela. Perovskitas ferroeléctricas. Conductividad iónica y mixta en las espinelas. Influencia del tamaño de partícula en las propiedades magnéticas de las espinelas. Aplicaciones
- Series homólogas derivadas de la estructura trióxido de renio. Bronces A_xBO₃.
 Perovskitas no estequiométricas

Tema 12: Sulfuros de los elementos metálicos.

- Analogías y diferencias entre óxidos y sulfuros
- Relaciones estructura-propiedades: Sulfuros de los elementos de transición.
- No estequiometría en sulfuros.
- Aplicaciones

Tema 13: Otros compuestos inorgánicos de interés: Silicatos.

- Introducción. Clasificación general de los silicatos.
- Silicatos laminares
- Sílice y silicatos tridimensionales
- Zeolitas: características estructurales. Síntesis. Aplicaciones: catálisis, tamiz molecular e intercambio de iones

Química Inorgánica II

PRÁCTICO:

Seminarios del primer semestre

- Técnicas básicas de caracterización de compuestos de coordinación y organometálicos.
- 2. Comportamiento magnético.

Seminarios del segundo semestre

- 1. Métodos de síntesis de sólidos no moleculares. Descomposición térmica.
- 2. Difracción de rayos X. Comportamiento magnético de sólidos no moleculares.

Prácticas

Se llevarán a cabo prácticas de compuestos de coordinación en el primer semestre y de sólidos no moleculares en el segundo. Todas ellas serán seleccionadas de entre las que se detallan a continuación:

- 1. Efecto plantilla: Síntesis de tetraazamacrociclo-complejos de Ni(II).
- 2. Preparación de complejos hexacoordinados de Cr(III). Comportamiento magnético. Determinación de la serie espectroquímica.
- 3. Preparación de TiO₂ por distintos métodos de síntesis. Estudio de la transformación de fase anatasa-rutilo.
- 4. Preparación y caracterización de disoluciones sólidas:
 - Sistema Al₂O₃/Cr₂O₃
 - Sistema Fe₂O₃/Cr₂O₃
- 5. Preparación, caracterización estructural y magnética de óxidos RCrO₄ (R=Tierra Rara).
- 6. Preparación de espinelas de Fe(III). Caracterización estructural y comportamiento magnético.
- 7. Preparación y estudio de las propiedades de la zeolita A.

V.- COMPETENCIAS

■ GENERALES:

o CG1-MF1: Reconocer los procesos químicos en la vida diaria.

o **CG2-MF1:** Relacionar la Química con otras disciplinas.

• **CG3-MF1:** Continuar sus estudios en áreas multidisciplinares.

o CG5-MF1: Demostrar el conocimiento y comprensión de los hechos esenciales,

conceptos, principios y teorías relacionadas con las áreas de la

Química.

• **CG6-MF1:** Analizar y resolver problemas cualitativos y cuantitativos.

Química Inorgánica II

o CG7-MF1: Reconocer y analizar nuevos problemas y planear estrategias para

solucionarlos.

o **CG8-MF1:** Consultar y utilizar información científica y técnica de forma eficaz.

o CG9-MF1: Demostrar conocimientos sobre material de laboratorio y

habilidades prácticas.

o **CG10-MF1:** Manipular con seguridad materiales químicos.

CG10-MF2: Reconocer y valorar los riesgos en el uso de sustancias químicas y

procedimientos de laboratorio.

o CG11-MF1: Manejar instrumentación química estándar y específica.

CG12-MF1: Interpretar datos procedentes de observaciones y medidas en el

laboratorio.

o CG13-MF1: Reconocer e implementar buenas prácticas científicas de medida y

experimentación.

■ ESPECÍFICAS:

Describir y relacionar el enlace, la estructura y las propiedades de los compuestos de los elementos metálicos.

o CE9-MFQI1: Desarrollar los aspectos fundamentales de la química de la

Coordinación y Organometálica.

 CE9-MFQI2.- Desarrollar los aspectos fundamentales de la Química del Estado Sólido.

CE10-MFQI1: Utilizar métodos experimentales de síntesis de compuestos

inorgánicos.

o **CE10-MFQI2**: Explicar los fundamentos y utilizar las técnicas más frecuentes para la caracterización de compuestos inorgánicos.

■ TRANSVERSALES:

o **CT1-MF1:** Elaborar y escribir informes de carácter científico y técnico.

o **CT2-MF1:** Cooperar con otros estudiantes mediante el trabajo en equipo.

o **CT3-MF1:** Aplicar el razonamiento crítico y autocrítico.

o CT5-MF1: Utilizar información química, bibliografía y bases de datos

especializadas.

o CT6-MF1: Identificar la importancia de la química en el contexto industrial,

medioambiental y social.

o CT7-MF1: Utilizar herramientas y programas informáticos para el tratamiento

de resultados experimentales.

o **CT11-MF1:** Desarrollar el aprendizaje autónomo.

CT12-MF1: Reconocer la problemática energética actual y su importancia.

o **CT12-MF2:** Desarrollar la sensibilidad por temas medioambientales.

VI.- RESULTADOS DE APRENDIZAJE

Al final de esta asignatura, el estudiante debe ser capaz de:

- o Aplicar la TOM a compuestos de coordinación.
- o Discutir aspectos termodinámicos fundamentales de los compuestos de coordinación.

Química Inorgánica II

- o Describir el efecto quelato y macrocíclico.
- Predecir la estereoquímica más favorable para un determinado compuesto de coordinación.
- Describir y aplicar la teoría ajustada del campo del cristal.
- o Reconocer y diferenciar los diferentes tipos de transiciones electrónicas.
- o Utilizar los diagramas de Tanabe-Sugano y calcular los parámetros correspondientes.
- o Explicar el color observado en los compuestos de coordinación.
- Explicar el comportamiento magnético de compuestos de coordinación de metales de la primera serie de transición.
- o Predecir la existencia de acoplamiento espín-órbita.
- Analizar las reacciones de sustitución en compuestos de coordinación y explicar el mecanismo por el que transcurren.
- Diseñar el proceso sintético de compuestos con geometría plano-cuadrada por sustitución de ligandos.
- Analizar las reacciones de transferencia electrónica en compuestos de coordinación y justificar el mecanismo más apropiado.
- o Identificar los diferentes tipos de enlace metal-carbono.
- o Aplicar la regla de los 18 electrones.
- o Explicar el enlace metal-carbono en ejemplos representativos.
- o Determinar el orden de enlace metal-metal en clústeres.
- o Aplicar las reglas de Wade para la determinación de la estructura de clústeres.
- Discutir la obtención de sólidos no moleculares mediante el método cerámico, reacciones de intercalación, intercambio iónico, síntesis hidrotermal y reacciones de transporte.
- Explicar las características de la estructura electrónica de sólidos no moleculares mediante diferentes aproximaciones que consideran electrones colectivos y electrones localizados.
- Analizar las bases conceptuales y las características generales del modelo de bandas de Goodenough para los sólidos no moleculares.
- Interpretar la estructura cristalina, la estructura electrónica y su relación con las propiedades que presentan los óxidos binarios (MO, MO₂, MO₃ y M₂O₃) y mixtos (ABO₃ y AB₂O₄).
- Discutir las diferencias entre un sólido no estequiométrico y la formación de una superestructura cristalina.
- Explicar las analogías y las diferencias entre sulfuros y óxidos de los elementos de transición.
- o Explicar algunos ejemplos de sulfuros no estequiométricos.
- Explicar la estructura cristalina y electrónica de algunos sulfuros 2D y 3D de elementos de transición.
- o Explicar las características generales de los silicatos.
- o Discutir la estructura cristalina de los silicatos laminares y tridimensionales.
- o Discutir las aplicaciones de las zeolitas en función de sus propiedades.
- Utilizar adecuadamente los métodos específicos de síntesis en función de la naturaleza de los compuestos inorgánicos.
- Explicar los fundamentos y utilizar las técnicas más frecuentes de caracterización de compuestos inorgánicos, e interpretar los resultados obtenidos.

Química Inorgánica II

VII.- HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos (horas)	
Clases teóricas	56	54	4,4 (110)	
Seminarios	22	48	2,8 (70)	
Tutorías/Trabajos dirigidos	6	14	0,8 (20)	
Laboratorios	40	33	2,92 (73)	
Preparación de trabajos y exámenes	6	21	1,08 (27)	
Total	130	170	12 (300)	

VIII.- METODOLOGÍA

La práctica docente seguirá una metodología mixta basada en el aprendizaje cooperativo, el aprendizaje colaborativo y el autoaprendizaje. Las actividades presenciales de la asignatura se estructuran en clases expositivas o magistrales de teoría, clases de seminario, tutorías y actividades dirigidas y clases prácticas.

Las **clases de teoría** (2 horas/semana durante todo el curso) serán expositivas y en ellas el profesor presentará de forma ordenada los conceptos teóricos y hechos experimentales que permitan al alumno obtener una visión global y comprensiva de la asignatura. Al comienzo de cada tema se expondrán el contenido y objetivos principales de dicho tema. Al final del tema se podrán plantear nuevas propuestas que permitan interrelacionar contenidos. Como apoyo a las explicaciones teóricas, se proporcionará a los alumnos el material docente apropiado, preferentemente a través del **Campus Virtual**.

Las **clases de seminarios** (1 hora/semana durante todo el curso) tendrán como objetivo aplicar los conocimientos adquiridos a un conjunto de cuestiones/ejercicios. Con anterioridad se entregará a los estudiantes una relación de cuestiones para que intenten su resolución previa a dichas clases. Parte de los ejercicios serán resueltos en clase por el profesor y en otros casos se llevará a cabo la resolución por parte de los alumnos. Algunas de las cuestiones estarán relacionadas con especies inorgánicas no descritas en el desarrollo teórico de la asignatura, para que los alumnos puedan utilizar los conocimientos adquiridos en la justificación de los hechos planteados en las mismas.

Se podrán realizar **exámenes cortos o plantear cuestiones** que se recogerán para valorar la evolución de los alumnos y el grado de consecución de conocimientos que van adquiriendo.

Con el objeto de realizar un seguimiento más personalizado de los estudiantes, y potenciar el trabajo autónomo en grupo, se propondrán una serie de **actividades dirigidas**. El profesor programará **tutorías** sobre cuestiones planteadas por los alumnos o por el profesor, relacionadas con el temario de la asignatura.

Se desarrollarán **prácticas de laboratorio** con contenidos relacionados con los teóricos para constituir un complemento y apoyo a las clases y seminarios. Las sesiones experimentales

Química Inorgánica II

de laboratorio se desarrollarán durante cinco días por semestre (4 h/día). En las sesiones se llevarán a cabo experimentos seleccionados entre los propuestos en el programa práctico de la asignatura y que se recogen en el guion de prácticas.

Durante las sesiones prácticas se impartirán 2 horas de seminarios por semestre, donde se explicarán los conocimientos necesarios para llevar a cabo las experiencias previstas. En paralelo a cada práctica irán desarrollando una memoria de su trabajo, que refleje de manera detallada cada una de las operaciones y reacciones realizadas, así como los resultados obtenidos. El profesor supervisará y discutirá con el estudiante el trabajo propuesto y el esquema de la memoria, resolviendo las dudas que se le hayan presentado durante su desarrollo. La memoria de laboratorio se entregará al profesor al final de las prácticas de cada semestre, en la fecha que se indicará oportunamente.

IX.- BIBLIOGRAFÍA

■ BÁSICA:

Al principio de curso se comentará la bibliografía recomendada, indicando los aspectos más relevantes de cada texto y el grado de adecuación a la asignatura. A continuación se relacionan textos recomendados de carácter general:

TEORÍA

- Huheey J. E., Keiter E. A., Keiter R. L., Medhi O. K., *Inorganic Chemistry: Principles of Structure and Reactivity*, 4th Ed. Pearson, 2006. Existe traducción al castellano de la 2^a ed. 1981.
- o Ribas Gispert, J.: *Química de la Coordinación*, Ediciones Omega, 2000. Versión inglesa: *Coordination Chemistry*, Wiley-VCH, 2008.
- o Smart, L.E.; Moore, E.A.: *Solid State Chemistry: An Introduction*, 4th ed., CRC Press, 2014.
- West A. R.: Solid State Chemistry and its Applications, Wiley, 2nd Edition, 2014.
- o Pico, C.; López, M. L.; Veiga, M. L.: Química del Estado Sólido, Síntesis, 2017.

PRÁCTICAS:

- o Dann, S. E.: *Reactions and Characterization of Solids*, The Royal Society of Chemistry, London, 2000.
- o Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordination Compounds (parts A and B), John Wiley & Sons, 2008.
- o Schubert, U.; Hüsing, N.: Synthesis of Inorganic Materials, 2nd ed. Wiley, 2005.

Los guiones de las prácticas estarán a disposición del estudiante en el Campus Virtual de la asignatura.

■ COMPLEMENTARIA:

- o Astruc, D.: Organometallic Chemistry and Catalysis, Springer, 2007.
- Bochmann M.: "Organometallics 1: Complexes with Transition Metal-Carbon σbonds", Oxford Univ. Press, 1994.

Química Inorgánica II

- ο Bochmann M.: Organometallics 2: Complexes with Transition Metal-Carbon π -bonds, Oxford Univ. Press, 1994.
- Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M.: Advanced Inorganic Chemistry, 6th ed., Wiley, 1995.
- Cotton, F. A., Murillo C.A., Walton R. A., Multiple Bonds between Metal Atoms, 3rd ed., Springer, 2005.
- o Greenwood, N.; Earnshaw, A.: *Chemistry of the Elements*, 2nd ed., Pergamon Press, 1997.
- o Housecroft, C.E.; Sharpe, A.G.: *Inorganic Chemistry*. 4th ed., Pearson 2012. (Traducción de la 2^{ed}., 2006).
- o Hyde G. G., Anderson S., *Inorganic Crystal Structures*, Wiley, 1989.
- o Miessler, G. L.; Fischer P. J., Tarr, D. A.: *Inorganic Chemistry*, 5th ed., Pearson 2013.
- o Müller, H.: *Inorganic Structural Chemistry*, 2nd ed., Wiley, 2007.
- o Porterfield, W. W.: *Inorganic Chemistry: An Unified Approach*, 2nd ed., Academic Press, 1999.
- o Rao, C. N. R.; Raveau, B.: *Transition Metal Oxides: Structure, Properties and Synthesis of Ceramic Oxides*, Wiley, 1998.
- Weller, M. T.; Overton, T L.; Rourke, J.P., Armstrong, F.A.: *Inorganic Chemistry*, 6th ed., Oxford University Press, 2014. Versión revisada del libro de igual título y editorial de autores Shriver et al. 2009.
- o Wells A. F. Structural Inorganic Chemistry, 5th Ed. Oxford Univ. Press, 1985.
- o Wold, A.; Dwight, K.: Solid State Chemistry, Chapman and Hall, 1993.

Además de los textos básicos y complementarios, puntualmente, se podrá indicar a los estudiantes bibliografía específica para cada tema.

X.- EVALUACIÓN

Para la evaluación final es obligatoria la participación en las diferentes actividades propuestas. Es obligatorio asistir a todas las sesiones de laboratorio. Para poder acceder a la evaluación final será necesario que el alumno haya participado al menos en el 70% de las actividades presenciales.

El rendimiento académico del alumno y la calificación final de la asignatura se computarán, de forma ponderada, atendiendo a los porcentajes que se muestran en cada uno de los aspectos recogidos a continuación. Todas las calificaciones estarán basadas en la puntuación absoluta sobre 10 puntos, y de acuerdo con la escala establecida en el RD 1125/2003. Este criterio se mantendrá en todas las convocatorias.

Las calificaciones de las actividades previstas para la evaluación de la asignatura se comunicarán a los estudiantes con la antelación suficiente antes de la realización del examen final. En especial, las notas de los exámenes parciales se comunicarán en un plazo máximo de 20 días, salvo en el caso del segundo parcial, en el que el plazo puede ser menor para adaptarse al examen final. En todo caso, se respetará el plazo mínimo de 7 días entre la publicación de las calificaciones y la fecha del examen final de la asignatura.

Los exámenes parciales serán liberatorios siempre que la nota alcanzada sea superior o igual a 6, únicamente para la convocatoria ordinaria.

Química Inorgánica II

■ EXÁMENES ESCRITOS (teoría):

60%

La evaluación de las competencias adquiridas en la parte teórica de la asignatura (CG1-MF1, CG2-MF1, CG3-MF1, CG5-MF1, CG6-MF1, CG7-MF1, CG8-MF1, CE8-MFQI1, CE9-MFQI1, CE9-MFQI2, CT3-MF1, CT5-MF1, CT6-MF1, CT11-MF1, CT12-MF1, CT12-MF2) se llevará a cabo mediante la realización de dos exámenes parciales, uno al final de cada semestre, y un examen final. Los alumnos que superen los dos exámenes parciales no estarán obligados a presentarse al examen final (convocatoria ordinaria y extraordinaria). En el examen final será necesario obtener una puntuación mínima de 4,0 para acceder a la calificación global de la asignatura, tanto si el examen comprende uno o los dos parciales.

Con este examen se valorarán las competencias generales CG1-MF1, CG2-MF1, CG5-MF1, CG6-MF1, CG7-MF1, CG8-MF1, las competencias específicas CE8-MFQI1, CE9-MFQI1 y CE9-MFQI2 y las competencias transversales CT3-MF1, CT5-MF1 y CT6-MF1.

■ TRABAJO PERSONAL:

5%

La evaluación del trabajo de aprendizaje individual realizado por el alumno se lleva a cabo teniendo en cuenta los siguientes factores:

- Destreza del alumno en la resolución de los problemas y ejercicios propuestos, que se recogerán periódicamente.
- Valoración del trabajo del alumno en los seminarios.

La evaluación de estos aspectos permitirá conocer el grado de consecución de las competencias generales CG1-MF1, CG2-MF1, CG5-MF1, CG6-MF1, CG7-MF1, CG8-MF1, CG12-MF1, de las competencias específicas CE8-MFQI1, CE9-MFQI2, CE10-MFQI2 y de las competencias transversales CT1-MF1, CT2-MF1, CT3-MF1, CT5-MF1, CT6-MF1, CT7-MF1, CT11-MF1, CT12-MF1, CT12-MF2.

■ ACTIVIDADES DIRIGIDAS:

5%

Se evaluará el trabajo realizado por los estudiantes durante las tutorías.

La evaluación de estos aspectos permitirá conocer el grado de consecución de las competencias generales CG1-MF1, CG2-MF1, CG5-MF1, CG6-MF1, CG7-MF1, CG8-MF1, de la competencia específica CE8-MFQI1, CE9-MFQI1, CE9-MFQI2 y de las transversales CT1-MF1, CT2-MF1, CT3-MF1, CT5-MF1, CT6-MF1, CT7-MF1, CT11-MF1, CT12-MF2.

■ PRÁCTICAS DE LABORATORIO: 30% (10% examen; 20% laboratorio)

La asistencia a todas las sesiones experimentales y seminarios de laboratorio es **obligatoria.** Sólo podrán realizarse cambios de grupo por causas justificadas.

Será necesario superar globalmente las actividades relacionadas con las prácticas de laboratorio para acceder a la calificación final de la asignatura y que constituyen en su conjunto el 30% de la calificación global.

La participación en el laboratorio será evaluada mediante la valoración por parte del profesor de los conocimientos teóricos adquiridos, de los procedimientos experimentales

Química Inorgánica II

utilizados, de la aptitud y actitud del alumno en las sesiones y del progreso observado en el alumno.

Será requisito la presentación de la memoria del laboratorio realizada por cada alumno durante el período de prácticas. El profesor valorará la elaboración de este trabajo, la forma en que el alumno presente e interprete los resultados obtenidos y la capacidad de síntesis.

Se realizará un examen por semestre al completar el correspondiente bloque de sesiones de laboratorio (convocatoria ordinaria). Habrá una convocatoria extraordinaria para los alumnos que no hayan alcanzado la calificación mínima.

Esta actividad reforzará los conocimientos adquiridos por el alumno, tanto en las clases presenciales de teoría y seminarios, como en las restantes actividades del curso, lo que redundará en el afianzamiento de todas las competencias generales, específicas y transversales.

Con esta actividad se evalúan las competencias generales CG1-MF1, CG2-MF1, CG5-MF1, CG6-MF1, CG7-MF1, CG8-MF1, CG9-MF1, CG10-MF2, CG11-MF1, CG12-MF1, CG13-MF1, las competencias específicas CE8-MFQI1, CE9-MFQI1, CE9-MFQI2, CE10-MFQI1 y CE10-MFQI2, y todas las transversales.

Química Inorgánica II

PLANIFICACIÓN DE ACTIVIDADES - CRONOGRAMA

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN
1. Enlace en compuestos de coordinación. Aspectos	Teoría	6	1		
termodinámicos. Estereoquímica (Tema 1,2 y 3)	Seminarios	2	1	1ª Semana	3ª Semana
2 Propiedades espectroscópicos y magnéticos en	Teoría	8	1	28 5	7a C
2. Propiedades espectroscópicas y magnéticas en	Seminarios	4	1	3ª Semana	/ Semana
compuestos de coordinación (Tema 4 y 5)	Tutoría	1	1	7ª sei	nana
3. Reactividad de los compuestos de coordinación (Tema	Teoría	6	1	8ª Semana	10ª Comana
-	Seminarios	1	1	o Semana	10 Semana
6)	Tutoría	1	1	10ª Semana	
4. Conceptos básicos en compuestos organometálicos.	Teoría	8	1	10 ^a Semana	14ª Semana
_	Seminarios	4	1	10 Semana	14 Semana
Enlace metal-metal (Tema 7 y 8)	Tutoría	1	1	13ª Semana	
	Teoría	3	1	15 ^a Semana	16ª Camana
5. Reactividad de sólidos. Tipos de reacciones (Tema 9)	Seminarios	1	1	15 Semana	10 Semana
	Teoría 6 Seminarios 2 Teoría 8 Seminarios 4 Tutoría 1 Teoría 6 Seminarios 1 Tutoría 1 Teoría 8 Seminarios 4 Tutoría 1 Tutoría 1 Teoría 3	1	1	17ª Se	emana
6. Óxidos y sulfuros de los elementos metálicos (Tema 10,	Teoría	16	1	17ª Semana	22ª Camana
· · · · · · · · · · · · · · · · · · ·	Seminarios	5	1	17 Semana	23 Semana
11 y 12)	Tutoría	1	1	21ª Se	14ª Semana Semana 16ª Semana Semana 23ª Semana Semana 28ª Semana
7. Otros compuestos inorgánicos de interés: Silicatos	Teoría	8	1	24ª Semana	28ª Semana
	Seminarios	3	1	24 Scillalia	20 Semana
(Tema 13)	Tutoría	1	1	28ª Se	emana
Prácticas de laboratorio	5 Sesiones de laboratorio	20	4	5 días del pri	ner Semestre
r racticas de iadoratorio	5 Sesiones de laboratorio	20	4	5 días del segu	ındo Semestre

PLANIFICACIÓN POR GRUPO DE TEORÍA

Química Inorgánica II

RESUMEN DE LAS ACTIVIDADES

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total	C
Clases de teoría	CG1-MF1, CG2-MF1, CG3-MF1, CG5-MF1, CG6-MF1, CG7-MF1, CG8-MF1, CE8-MFQI1, CE9-MFQI1, CE9-MFQI2 CT3-MF1, CT5-MF1, CT6-MF1, CT7-MF1,	 Exposición de conceptos teóricos. Planteamiento de cuestiones y nuevas propuestas. 	 Toma de apuntes. Resolución de cuestiones. Desarrollo de nuevas propuestas. Formulación de preguntas y dudas. 	Calificación de las respuestas realizadas a preguntas relacionadas con los conceptos teóricos.	56	54	110	
Seminarios	CG1-MF1, CG2-MF1, CG5-MF1, CG6-MF1, CG7-MF1, CG8-MF1, CG12-MF1 CE8-MFQI1, CE9-MFQI1, CE9-MFQI2, CE10-MFQI2 CT1-MF1, CT2-MF1, CT3- MF1, CT5-MF1, CT6-MF1, CT7-MF1, CT11-MF1, CT12-MF1, CT12-MF2	 Aplicación de la teoría a la resolución de ejercicios y problemas y al desarrollo de los métodos experimentales. Planteamientos de nuevas cuestiones. 	 Toma de apuntes. Resolución de ejercicios y cuestiones. Formulación de preguntas y dudas. 	Calificación de las respuestas (planteamiento y resultado) realizadas para la resolución de ejercicios prácticos y problemas numéricos.	22	48	70	5%
Tutorías	CG1-MF1, CG2-MF1, CG5-MF1, CG6-MF1, CG7-MF1, CG8-MF1 CE8-MFQI1, CE9-MFQI1, CE9-MFQI2 CT1-MF1, CT2-MF1, CT3- MF1, CT5-MF1, CT6-MF1, CT7-MF1, CT11-MF1, CT12-MF1, CT12-MF2	 Dirección y supervisión del estudio y actividades del alumno. Planteamiento de cuestiones. 	 Consulta al profesor sobre las dificultades que encuentra en el estudio y preparación de la materia. Resolución de las cuestiones planteadas. Cooperación con los compañeros y análisis crítico de los trabajos 	Valoración del trabajo y de los análisis realizados.	6	14	20	5 %

Química Inorgánica II

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total	C
Exámenes (teoría)	CG1-MF1, CG2-MF1, CG5-MF1, CG6-MF1, CG7-MF1, CG8-MF1 CE8-MFQI1, CE9-MFQI1, CE9-MFQI2 CT3-MF1, CT5-MF1, CT6- MF1	 Propuesta, vigilancia y corrección del examen. Calificación del alumno. 	Preparación y realización de los exámenes.	Corrección y valoración de los exámenes.	4	11	15	60 %
Laboratorios	Todas las competencias generales, específicas y transversales	 Explicación y supervisión del procedimiento experimental. Enseñanza de la interpretación y discusión de las experiencias realizadas. 	 Realización y análisis de los experimentos. Elaboración de la memoria del laboratorio. 	 Evaluación continua de la actitud y aptitud del alumno en el laboratorio. Valoración de la memoria. 	40	33	73	20 %
Exámenes (laboratorio)	CG1-MF1, CG2-MF1, CG5-MF1, CG6-MF1, CG7-MF1, CG8-MF1, CG9-MF1, CG10-MF2, CG12-MF1 CE8-MFQI1, CE10-MFQI1, CE10-MFQI2 CT3-MF1, CT5-MF1, CT6-MF1	 Propuesta, vigilancia y corrección del examen. Calificación del alumno. 	Preparación y realización de los exámenes.	Corrección y valoración de los exámenes.	2	10	12	10 %

P: presenciales; NP: no presenciales (trabajo autónomo); C: calificación

