

Guía Docente: Escenarios 1, 2 y 3

TÉCNICAS DE ANÁLISIS BIOQUÍMICO I

FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2021-2022

ESCENARIO 1. PRESENCIAL

I.- IDENTIFICACIÓN

NOMBRE DE LA ASIGNATURA: Técnicas de Análisis Bioquímico I

NÚMERO DE CRÉDITOS: 6

CARÁCTER:

MATERIA:

MÓDULO:

Básica

Bioquímica

Básico

TITULACIÓN: Grado en Bioquímica SEMESTRE/CUATRIMESTRE: Primero (primer curso)

DEPARTAMENTO/S: Bioquímica y Biología Molecular

PROFESOR/ES RESPONSABLE/S:

Grupo A					
Teoría	Profesor: Departamento: Despacho: e-mail:	ÁLVARO MARTÍNEZ DEL POZO Bioquímica y Biología Molecular L2. 4ª Planta, QA alvaromp@ucm.es			
Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	SARA GARCÍA LINARES Bioquímica y Biología Molecular L2. 4ª Planta, QA sglinares@ucm.es			

II.- OBJETIVOS

■ OBJETIVO GENERAL

Proporcionar al estudiante una detallada visión de los métodos de cuantificación, aislamiento y purificación de las macromoléculas biológicas.

■ OBJETIVOS ESPECÍFICOS

 Proporcionar las bases conceptuales para manejar las técnicas bioquímicas básicas e interpretar los resultados obtenidos.

III.- CONOCIMIENTOS PREVIOS Y RECOMENDACIONES

■ CONOCIMIENTOS PREVIOS:

■ RECOMENDACIONES:

IV.- CONTENIDOS

■ BREVE DESCRIPCIÓN DE LOS CONTENIDOS

Detección y cuantificación de compuestos biológicos. Espectrofotometría ultravioletavisible. Emisión de fluorescencia. Contaje y detección de radiactividad. Separación y purificación de compuestos biológicos. Ultracentrifugación. Electroforesis. Cromatografía.

■ PROGRAMA:

1. Absorción de radiación electromagnética UV-visible

Absorción de radiación electromagnética UV-visible: cromóforo. Espectrofotometría de proteínas y de ácidos nucleicos. Colorimetrías. Medidas cinéticas.

2. Emisión de fluorescencia

Emisión de fluorescencia: fluoróforo, rendimiento cuántico, intensidad de fluorescencia. Espectrofluorimetría de proteínas y ácidos nucleicos.

3. Emisiones radiactivas

Emisiones radiactivas: actividad absoluta y relativa, eficacia. Contadores de centelleo. Métodos autorradiográficos. Introducción a los métodos radioinmunométricos.

4. Ultracentrifugación

Ultracentrifugación: ecuación de Svedberg, coeficiente de sedimentación. Ultracentrifugación preparativa. Rotores.

5. Electroforesis

Electroforesis: movilidad electroforética. Electroforesis en geles de poliacrilamida y de agarosa. Transferencias. Electroenfoque.

6. Cromatografía

Cromatografía: de penetrabilidad, de intercambio iónico, de afinidad, en fase invertida. Sistemas cromatográficos de elevada resolución (HPLC).

V.- COMPETENCIAS

■ GENERALES:

 CG7
 Trabajar de forma adecuada en un laboratorio bioquímico, utilizando la instrumentación y los métodos experimentales más frecuentes, describiendo, cuantificando y evaluando críticamente los resultados obtenidos.

o **CG10** Evaluar, interpretar y resumir información y datos bioquímicos, haciendo uso de la literatura científica.

o CG14 Comunicar con rigor los aspectos fundamentales de su actividad

profesional a otros profesionales de su área, o de áreas afines, y a un público no especializado.

■ ESPECÍFICAS:

o **CE10-BQ5** Contrastar técnicas para la cuantificación y purificación de macromoléculas biológicas.

■ TRANSVERSALES:

o CT1-BQ1 Adaptarse a nuevas situaciones.

o **CT4-BQ2** Trabajar en equipo, cooperando con otros estudiantes.

o CT2-BQ3 Razonar de modo crítico.

o CT14-BQ4 Desarrollar una motivación por la calidad.

o CT13-BQ5 Mostrar sensibilización por temas medioambientales.

o CT5-BQ6 Relacionar la Bioquímica con otras disciplinas.

VI. – HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos	
Clases teóricas	45	67,5	4,5	
Seminarios	3	4,5	0,3	
Tutorías/Trabajos dirigidos	2	3	0,2	
Preparación de trabajos y exámenes	3	22	1	
Total	53	97	6	

VII.- METODOLOGÍA

La actividad docente seguirá una metodología híbrida, que hará uso de un aprendizaje colaborativo y un aprendizaje individual. Las actividades presenciales de la asignatura se estructuran en **clases de teoría**, **seminarios y tutorías**.

En las **clases de teoría** el profesor dará a conocer al alumno el contenido de la asignatura. Se presentarán los conceptos teóricos y algunos hechos experimentales que permitan al alumno obtener una visión global y comprensiva de la asignatura. Al comienzo de cada tema se expondrán el contenido y objetivos principales de dicho tema. Al final del tema se podrán plantear nuevas propuestas que permitan interrelacionar contenidos ya estudiados con los del resto de la asignatura o con otras asignaturas. Como apoyo a las explicaciones teóricas, se proporcionará a los alumnos el material docente apropiado, bien en fotocopias o bien en el **Campus Virtual**.

Las **clases de seminarios** tendrán como objetivo aplicar los conocimientos adquiridos a un conjunto de cuestiones y/o ejercicios. Con anterioridad se entregará a los estudiantes una relación de cuestiones para que intenten su resolución previa a dichas clases. Parte de los ejercicios serán resueltos en clase por el profesor y en otros casos se llevará a cabo la resolución por parte de los alumnos.

VIII.- BIBLIOGRAFÍA

■ BÁSICA:

No se va a seguir un libro de texto concreto para el desarrollo de la asignatura. A continuación se relacionan textos recomendados de carácter general.

- Walker y Wilson, "Principles and Techniques of Biochemistry and Molecular Biology", 7^a edition, Cambridge University Press; 2010.
- o García-Segura, J.M., Gavilanes, J.G., Martínez del Pozo, A., Montero, F., Oñaderra, M. y Vivanco, F., "*Técnicas Instrumentales de Análisis en Bioquímica*", Editorial Síntesis, 1996.

■ COMPLEMENTARIA:

- o Owen. T., "Fundamentals of UV-visible spectroscopy. A primer", Hewlett-Packard, 1996.
- O Harris, D.A., "Light Spectroscopy", βios Scientific Publishers, 1996.
- o Lakowicz, J.R., "Principles of Fluorescence Spectroscopy", Kluwer Academic/Plenum Publishers, 1999.
- O Dunn, M.J., "Gel Electrophoresis: Proteins", βios Scientific Publishers), 1993.
- o Martin, R., "Gel Electrophoresis: Nucleic Acids", βios Scientific Publishers), 1996.
- O Billington, D., Jayson, G.G. y Maltby, P.J., "Radioisotopes", βios Scientific Publishers, 1992.
- o Ford, T.C. y Graham, J.M., "An introduction to centrifugation", βios Scientific Publishers), 1991.
- o Cantor, C.R. y Schimmel, P.R., "Biophysical Chemistry: Part III. Techniques for the Study of Biological Structure and Function", Freeman, 1980.
- o Bergethon, P.R. "The Physical Basis of Biochemistry", Springer, 1998.
- o Phillips, R., Kondev, J., Theriot, T. y Orme, N., "Physical Biology of the Cell", Garland Science, 2008.

IX.- EVALUACIÓN

Para la evaluación final es obligatoria la participación en las diferentes actividades propuestas. Para poder superar la asignatura será necesario que el alumno haya participado al menos en el 70% de las actividades presenciales.

El rendimiento académico del alumno y la calificación final de la asignatura se computarán de forma ponderada atendiendo a los siguientes porcentajes, que se mantendrán en todas las convocatorias:

■ EXÁMENES ESCRITOS:

80%

La evaluación de las competencias adquiridas en la parte teórica de la asignatura se llevará a cabo mediante la realización de un único examen final. El examen constará de preguntas sobre aplicación de conceptos aprendidos durante el curso y cuestiones prácticas relacionadas.

■ TRABAJO PERSONAL:

15%

La evaluación del trabajo de aprendizaje realizado por el alumno considerará la destreza del alumno en la resolución de los problemas y ejercicios propuestos.

■ ASISTENCIA Y PARTICIPACIÓN ACTIVA EN LAS CLASES:

5%

La asistencia y la participación del alumno en todas las actividades se valorará positivamente en la calificación final. La falta de asistencia reiterada podrá penalizarse.

Siempre se respetará un plazo mínimo de siete días entre la publicación de cualquier calificación, si fuera el caso, y la fecha del examen final de la asignatura.

Técnicas de Análisis Bioquímico I

PLANIFICACIÓN DE ACTIVIDADES – CRONOGRAMA

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN	
1. Abgaraión da radiación alactromagnática UV vicible	Clases Teoría	9	1	1 ^a Semana	3ª Semana	
1. Absorción de radiación electromagnética UV-visible	Seminarios	1	1	i Semana	5 Semana	
2. Emisión de fluorescencia	Clases Teoría	6	1	4ª Semana	5ª Semana	
3. Emisjones radiactivas	Clases Teoría	6	1	6 ^a Semana	78 C	
5. Emisiones radiactivas	Seminarios	1	1	o Semana	7ª Semana	
4. Ultracentrifugación	Clases Teoría	6	1	8ª Semana	9ª Semana	
5. Electroforesis	Clases Teoría	9	1	10 ^a Semana	12ª Semana	
5. Electroloresis	Seminarios	1	1	10 Semana		
6. Cromatografía	Clases Teoría	9	1	13ª Semana	15ª Semana	
	Tutorías	2	3	5 ^a y 11 ^a Semanas		

Técnicas de Análisis Bioquímico I

RESUMEN DE LAS ACTIVIDADES

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total	C
Clases de teoría	CG-7 CG-10	Exposición de conceptos teóricos. Planteamiento de cuestiones.	Toma de apuntes, formulación y contestación de cuestiones.	Valoración de las respuestas a preguntas relacionadas con los conceptos teóricos explicados.		67,5	112,5	
Seminarios	CG-14 CE10-BQ5	Aplicación de la teoría a la resolución de ejercicios y problemas.	Toma de apuntes. Realización de ejercicios. Formulación y contestación de cuestiones.	Valoración de la resolución de ejercicios prácticos.	3	4,5	7,5	20%
Tutorías	CT1-BQ1 CT4-BQ2 CT2-BQ3 CT14-BQ4 CT13-BQ5	Dirección y supervisión del estudio y actividades del alumno. Planteamiento de cuestiones.	Resolución de las cuestiones planteadas.	Valoración del trabajo, exposición y desarrollo.	2	3	5	
Exámenes	CT5-BQ6	Propuesta, vigilancia y corrección del examen. Calificación del alumno.	Preparación y realización.		3	22	25	80%

P: Presenciales; NP: no presenciales (trabajo autónomo); C: calificación

Si el desarrollo del curso 2021-22 se viese afectado por medidas conducentes a la no presencialidad, se procederá a la adaptación de la Guía Docente para su tránsito a la docencia y evaluación en línea, según se recoge a continuación.

ESCENARIO 2. SEMIPRESENCIAL

VIII.- METODOLOGÍA

Los cursos primero y segundo del Grado en Bioquímica se prevé que se desarrollen con 100% de presencialidad.

Por ello, lo que sigue sólo será de aplicación en el caso de que las condiciones sanitarias impongan una sustancial modificación del escenario docente presencial:

- Clases de teoría y seminarios impartidos por el profesor en el régimen habitual, como en el Escenario 1, y con el mismo contenido. Atendiendo al principio de *máxima presencialidad* aprobado por el Rectorado de la UCM, la sesión será seguida presencialmente por los alumnos en el aula, hasta aforo completo considerando distancia social. Los alumnos ubicados en aulas provistas de cámaras, y que no quepan en el aula, seguirán la sesión virtualmente, bien desde su domicilio o en las zonas de uso público habilitadas por la Facultad para este fin, que estarán debidamente publicitados en el Campus Virtual (CV). Para las aulas que no tienen cámara, se establecerá un turno rotatorio de alumnos presenciales en el aula, atendiendo a la numeración del DNI. Este procedimiento podrá ser modificado por el profesor a lo largo del curso, según considere oportuno, para ir ajustando el aforo del aula con los estudiantes asistentes a su clase.
 - El material docente utilizado se basará en las presentaciones de clase habilitadas en el Campus Virtual UCM empleadas también en el Escenario 1, así como otros tipos de materiales que los profesores de la asignatura consideren de relevancia e interés. Todo el material estará con antelación a disposición de los estudiantes a través del Campus Virtual para su utilización.
 - Los medios telemáticos utilizados para que los alumnos sin presencialidad en el aula sigan virtualmente las sesiones serán las plataformas habituales: Google Meet, Microsoft Teams o Zoom. El profesor mantendrá abierta una sesión de este tipo para mantener una relación directa y fluida con los estudiantes que asisten virtualmente, pudiendo así proyectarse simultáneamente la presentación .ppt y seguir las tradicionales explicaciones que se den en la pizarra.

• Tutorías Individuales

Se realizarán por video conferencia y/o correo electrónico.

Seguimiento del alumnado

En la parte de docencia que se realiza de forma presencial se seguirán las mismas técnicas empleadas de forma tradicional.

En la parte de docencia virtual el seguimiento se realizará por diversas técnicas, según considere el profesor: mediante la herramienta de registro de actividades de cada sesión, el nombre de los asistentes (Google Meet), hoja de firmas habilitada en el CV a modo de cuestionario, análisis de descargas efectuadas por los alumnos en el CV, etc.

X.- EVALUACIÓN

Se realizarán exámenes presenciales tal como se describe en el Escenario 1.

ESCENARIO 3. TOTALMENTE VIRTUAL

VIII.- METODOLOGÍA

DOCENCIA ASÍNCRONA

- 1.- Presentaciones en pdf que recogen todos los contenidos de cada tema. Las presentaciones no sólo tienen figuras, sino los necesarios documentos explicativos.
- 2.- Documentos en pdf de esquemas, escritos a mano, que recogen las "pizarras" del profesor como si se tratase de clases presenciales.
- 3.- Cuestionarios de 20-40 preguntas específicos para cada tema. A la vez, son una guía de estudio y un método de autoevaluación.

DOCENCIA ON-LINE EN DIRECTO

Clases de resolución de dudas sobre cada tema específico utilizando las herramientas telemáticas disponibles y el material suministrado previamente. Cada clase queda grabada y disponible en el correspondiente apartado del Campus virtual.

Además, el profesorado estará disponible para recibir y responder a cualquier pregunta de los alumnos, vía correo electrónico.

X.- EVALUACIÓN

Tipo de examen:

El examen virtual se llevará a cabo a través de distintos tipos de cuestionarios y/o tareas utilizando las distintas herramientas que ofrece el Campus Virtual.

Identificación de estudiantes:

Se controlará a través del acceso de los estudiantes al Campus Virtual, el cual queda registrado a través de su identificación con nombre de usuario y contraseña.

Seguimiento de estudiantes durante la prueba:

Se llevará a cabo tanto de forma sincrónica mediante conexión abierta en el campus virtual, así como de forma asincrónica comprobando el correcto desarrollo de la prueba mediante la sección de registros de actividad de la asignatura en el Campus Virtual.

Mecanismo de revisión no presencial previsto:

Se efectuará con la creación de la pertinente actividad en el Campus Virtual, y haciendo uso de los medios telemáticos correspondientes, si fuera necesario.

Mecanismo empleado para la documentación/grabación de las pruebas de evaluación para su posterior visualización y evidencia:

Las evidencias de los exámenes se almacenarán de manera que no sólo un profesor tenga acceso a ellas, evitando su almacenamiento en el correo electrónico. Y esto se mantendrá no sólo para la revisión de examen sino también para futuras auditorías externas.

Con carácter general, la referencia de actuación será la recogida en la página web de la Facultad.