

QUÍMICA ANALÍTICA

FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2010-2011

Química Analítica

I.- IDENTIFICACIÓN

NOMBRE DE LA ASIGNATURA: Química Analítica

CARÁCTER: Obligatoria

MATERIA: Química y Bioquímica MÓDULO: Tecnología Química

TITULACIÓN: Grado en Ingeniería Química

SEMESTRE/CUATRIMESTRE: Primero (segundo curso)

DEPARTAMENTO/S: Química Analítica

PROFESOR/ES RESPONSABLE/S:

	Grupo A				
Teoría Seminario Tutoría	Profesora: Departamento: Despacho: e-mail:	Mª TERESA PÉREZ CORONA Química Analítica QA-416 mtperezc@quim.ucm.es			
Teoría Seminario Tutoría	Profesora: Departamento: Despacho: e-mail:	SARA RUBIO BARROSO Química Analítica QB-437 srubioba@quim.ucm.es			
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	DANIEL ROSALES MARTÍNEZ Química Analítica QA-412 drosales@quim.ucm.es			
Prácticas	Coordinadora: Departamento: Despacho: e-mail:	Mª TERESA PÉREZ CORONA Química Analítica QA-416 mtperezc@quim.ucm.es			

II.- OBJETIVOS

■ OBJETIVO GENERAL

Se trata de introducir al alumno en la Química Analítica con el fin de que adquiera un conocimiento claro y actualizado del proceso analítico, de su fundamento y de la metodología analítica, así como de las aplicaciones al análisis cuantitativo de los métodos volumétricos y gravimétricos. Además, se pretende que el alumno:

- conozca los principales métodos instrumentales de análisis con el fin de resolver problemas analíticos y su aplicación en el control de procesos industriales.
- adquiera la destreza básica experimental para la elección, realización y evaluación de métodos de análisis, tanto clásicos como instrumentales.

Química Analítica

Tras cursar la asignatura, el alumno debe ser capaz de aplicar los conocimientos adquiridos en el estudio de los equilibrios químicos al análisis volumétrico y gravimétrico, así como de seleccionar la técnica analítica adecuada para la resolución de un problema analítico concreto.

■ OBJETIVOS ESPECÍFICOS

- Conocer la metodología general del proceso analítico, valorando la importancia de cada una de las etapas implicadas en el mismo.
- o Conocer la aplicación de los equilibrios químicos al análisis volumétrico y gravimétrico como métodos absolutos de análisis.
- o Conocer los métodos ópticos y electroanalíticos de análisis, y los métodos cromatográficos.
- o Adquirir una formación práctica de los métodos cuantitativos de análisis.

III.- CONOCIMIENTOS PREVIOS Y RECOMENDACIONES

■ CONOCIMIENTOS PREVIOS:

Nomenclatura y formulación química inorgánica y orgánica. Sistema Periódico y estados de oxidación más frecuentes. Ajuste de reacciones. Expresión de concentraciones y preparación de disoluciones. Fundamentos de equilibrios en disolución.

■ RECOMENDACIONES:

Se recomienda haber superado la asignatura "Química Básica".

IV.- CONTENIDOS

■ BREVE DESCRIPCIÓN DE LOS CONTENIDOS:

Contenidos teóricos

El proceso analítico y la medida en Química Analítica. Propiedades analíticas. Volumetrías: ácido-base, precipitación, complexométricas, oxidación-reducción. Gravimetrías: tipos y aplicaciones. Técnicas instrumentales: principios generales e instrumentación básica. Técnicas ópticas y electroanalíticas de análisis. Técnicas analíticas de separación: cromatográficas y no cromatográficas.

Contenidos prácticos

Aplicación de los métodos clásicos e instrumentales a la determinación de especies y compuestos. Aplicación de técnicas de separación cromatográficas a muestras representativas.

Química Analítica

■ PROGRAMA:

TEÓRICO:

Tema 1: Química Analítica: concepto, objetivos y metodología

Etapas del proceso analítico.

Tema 2: Fundamentos del análisis volumétrico

Requisitos de las reacciones volumétricas. Clasificación de las reacciones volumétricas. Disoluciones patrón: tipos y preparación. Curvas de valoración: detección del punto final y error de valoración. Cálculos volumétricos.

Tema 3: Volumetrías ácido-base

Curvas de valoración. Indicadores ácido-base. Aplicaciones: determinación de nitrógeno elemental mediante el método Kjeldahl; determinación de sustancias inorgánicas: carbonatos y fosfatos. Otras determinaciones.

Tema 4: Volumetrías de formación de complejos

Ligandos monodentados y polidentados. Curvas de valoración. Indicadores. Tipos de complexometrías. Aplicaciones: determinación de la dureza del agua.

Tema 5: Volumetrías de precipitación

Precipitación fraccionada. Curvas de valoración: una especie o mezcla de especies. Indicadores. Aplicaciones: método de Mohr, método de Volhard.

Tema 6: Gravimetrías

Propiedades de los precipitados y reactivos precipitantes. Tipos de gravimetrías. Factor gravimétrico. Aplicaciones.

Tema 7: Volumetrías de oxidación-reducción

Curvas de valoración. Indicadores redox. Agentes oxidantes y reductores empleados como valorantes. Aplicaciones.

Tema 8: Técnicas instrumentales de análisis

Fundamentos y clasificación. Componentes fundamentales de un instrumento analítico. Relación señal analítica-concentración. Características analíticas de un método analítico.

Tema 9: Introducción a las técnicas espectroscópicas

Propiedades de la radiación electromagnética. El espectro electromagnético. Absorción atómica y molecular. Emisión atómica y molecular.

Tema 10: Instrumentos para espectroscopia óptica

Componentes fundamentales. Tipos de instrumentos.

Tema 11: Espectroscopia de absorción molecular ultravioleta-visible e infrarroja

Fundamentos. Ley de Lambert-Beer: desviaciones y sus causas. Instrumentación. Aplicaciones: análisis cualitativo y cuantitativo.

Química Analítica

Tema 12: Espectroscopia de luminiscencia molecular

Fosforescencia, fluorescencia y quimioluminiscencia. Fluorescencia: factores que afectan a la fluorescencia. El fluorímetro. Aplicaciones.

Tema 13 Espectroscopia atómica: técnicas de absorción y emisión

Fundamentos. Clasificación. Sistemas de atomización. Absorción atómica con llama: componentes específicos. Aplicaciones.

Tema 14: Introducción a la química electroanalítica

Fundamentos. Relación intensidad y potencial en los procesos analíticos. Clasificación de las técnicas electroanalíticas. Potenciometría

Tema 15: Técnicas analíticas de separación

Técnicas no cromatográficas: extracción sólido-líquido y extracción líquido-líquido. Técnicas cromatográficas: fundamentos y parámetros cromatográficos. Cromatografía de gases. Cromatografía de líquidos. Aplicaciones.

PRÁCTICO:

- 1. Determinación de nitrógeno en harinas por el método Kjeldalh. Volumetría ácidobase.
- 2. Determinación volumétrica de la dureza del agua. Volumetría de formación de complejos.
- 3. Determinación de Vitamina C en un preparado farmacéutico. Volumetría redox.
- 4. Determinación potenciométrica de fluoruros.
- 5. Determinación espectrofotométrica de fosfatos.
- 6. Determinación de ácidos grasos en posición trans en margarinas por espectrometría infrarroja.
- 7. Determinación de quinina en agua tónica mediante fluorescencia molecular.
- 8. Determinación de cinc en aguas (absorción atómica) y de potasio en vinos (emisión atómica).
- 9. Determinación de paracetamol, cafeína y ácido acetilsalicílico en analgésicos por cromatografía de líquidos.
- 10. Determinación de hidrocarburos en muestras ambientales por cromatografía de gases.

V.- COMPETENCIAS

■ GENERALES:

o CG1-TQ1: Utilizar conceptos para el aprendizaje autónomo de nuevos

métodos y teorías.

CG5-TQ1: Analizar y optimizar procesos y productos.

■ ESPECÍFICAS:

Química Analítica

o CE24-QB1: Describir las etapas del proceso analítico, ponderando la

importancia de cada una de ellas con vistas a la obtención de

medidas de calidad.

o CE24-QB2: Aplicar los conceptos adquiridos en el estudio de los equilibrios

iónicos en disolución al análisis volumétrico y gravimétrico.

o CE24-QB3: Describir los fundamentos básicos de las principales técnicas

instrumentales ópticas, electroanalíticas y cromatográficas.

o CE24-QB4: Seleccionar la técnica adecuada para la resolución de un problema

analítico concreto.

o **CE25-QB1:** Adquirir la destreza experimental necesaria para la realización de

volumetrías, gravimetrías, y para aplicar las técnicas instrumentales y de separación a la resolución de problemas

analíticos concretos en diferentes procesos industriales.

■ TRANSVERSALES:

o **CT1-TQ1:** Desarrollar capacidad de análisis y síntesis.

o **CT2-TQ1:** Resolver problemas en el área de la Tecnología Química.

o CT4-TQ1: Comunicarse en español utilizando los medios audiovisuales

habituales.

o CT5-TQ1: Consultar, utilizar y analizar fuentes bibliográficas en el área de la

Tecnología Química.

CT5-TQ2: Consultar, utilizar y analizar bases de datos especializadas y de

recursos accesibles a través de Internet.

o CT6-TQ1: Utilizar herramientas y programas informáticos para calcular,

simular y aproximar.

o **CT8-TQ1**: Demostrar capacidad para el razonamiento crítico y autocrítico.

o **CT11-TQ1:** Aprender de forma autónoma.

o CT12-TQ1: Desarrollar sensibilidad hacia la repercusión social y

medioambiental de las soluciones analíticas planteadas.

VI. – HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos	
Clase teórica	30	55	3,4	
Seminario	21	29	2,0	
Tutoría/Trabajos dirigidos	4	6	0,4	
Laboratorio	30	22,5	2,1	
Preparación de trabajos y exámenes	8	19,5	1,1	
Total	93	132	9	

Química Analítica

VII.- METODOLOGÍA

Los contenidos de la asignatura se presentan a los alumnos en clases presenciales, divididas en tres grupos:

Las denominadas **clases presenciales de teoría** se impartirán al grupo completo, y en ellas se dará a conocer al alumno el contenido de la asignatura. Al comienzo de cada tema se expondrán claramente el contenido y objetivos principales del tema en estudio. Al final del tema se hará un breve resumen de los contenidos más relevantes y se plantearán cuestiones que permitirán interrelacionar los contenidos ya estudiados. Se propondrán cuestiones que ejemplifiquen los conceptos desarrollados o que sirvan de introducción a nuevos contenidos. Se le proporcionará al alumno el material docente que se considere oportuno para facilitarle el seguimiento de la clase presencial, bien en modo fotocopia o a través del Campus Virtual. Las herramientas didácticas empleadas serán la pizarra y presentaciones en PowerPoint, así como enlaces a páginas Web cuando sea adecuado.

Para la impartición de los **seminarios asociados a la teoría**, se dividirá el grupo en dos. En ellos se realizarán fundamentalmente problemas de los temas desarrollados en la clase de teoría. Periódicamente se suministrará al alumno una relación de problemas/ejercicios con el objetivo de que intente su resolución previa a las clases de seminario. La resolución de los problemas se llevará a cabo de diferentes formas: el profesor resolverá problemas tipo, y también se instará al alumno para que los resuelva en la pizarra, con el consecuente debate con el resto de compañeros, y relacionando el problema con su aplicación a casos reales cuando sea posible. Por último, y de forma periódica, se recogerán algunos ejercicios y/o tests para su evaluación.

Los **laboratorios** se impartirán en sesiones de 3 horas en las cuales los alumnos aplicarán los conocimientos de los métodos de análisis adquiridos a través de las actividades presenciales y de su trabajo personal, a la determinación de analitos relevantes en el control de la calidad en procesos industriales, o con relevancia medioambiental. Por otro lado se abordará también el tratamiento y evaluación de los datos obtenidos en el laboratorio, así como su relevancia y consecuencias prácticas.

Los **seminarios asociados al laboratorio** se impartirán en sesiones independientes a las propias sesiones de laboratorio, y en ellos se proporcionará al alumno las pautas necesarias para abordar el trabajo de laboratorio con seguridad, además de explicar las operaciones experimentales que se van a realizar. Cuando sea preciso se abordará también el tratamiento y evaluación de los datos obtenidos en el laboratorio.

En las **actividades dirigidas** los alumnos deberán presentar y/o exponer algún trabajo a lo largo del curso, sobre temas relacionados con la asignatura, que se evaluará como actividades de trabajo autónomo o no presencial. El objetivo general de estos trabajos es que los alumnos conozcan la utilidad de los métodos analíticos estudiados en la asignatura, para su aplicación real en la evaluación de la calidad de los métodos de análisis y su aplicación a procesos industriales, así como en el área de medio ambiente. Los trabajos propuestos a cada alumno contemplarán dos posibles modalidades:

- (1) resolución de problemas numéricos relacionados con un caso real, y
- (2) preparación de un tema específico, teniendo que realizar la correspondiente búsqueda bibliográfica del mismo.

Química Analítica

Las **tutorías** se programarán con grupos reducidos. En ellas se resolverán las dudas planteadas por los alumnos y se discutirán los problemas y las cuestiones aportadas por el profesor relacionadas con el temario de la asignatura, así como casos prácticos concretos. Se le propondrá al alumno un problema numérico para resolver en el tiempo de la tutoría, el cual se considerará para su evaluación continua.

Se utilizará el **Campus Virtual** para permitir una comunicación fluida entre profesores y alumnos a través de su correo, y como instrumento para poner a disposición de los alumnos el material que se utilizará en las clases tanto teóricas como seminarios, y en los laboratorios. También podrá utilizarse como herramienta a través de la cual se aporte al alumno información sobre temas complementarios o de interés, que no se considere oportuno presentar en las clases presenciales.

VIII.- BIBLIOGRAFÍA

■ BÁSICA:

- o Skoog, D. A., West, D. M. Holler, F. J., Crouch, S. R., "Fundamentos de Química Analítica", Ed. Thomson, 8ª ed., 2005.
- o Silva M. y Barbosa J. "Equilibrios iónicos y sus aplicaciones analíticas", Ed. Síntesis, 1ª ed., 2004.
- Yáñez-Sedeño P., Pingarrón J.M., Manuel de Villena F. J., "Problemas resueltos de Química Analítica", Ed. Síntesis, 1ª ed., 2003
- o Skoog, D. A., Leary, J. J., "Análisis instrumental", Ed. McGraw-Hill, 4ª Ed., 1994.

■ COMPLEMENTARIA:

- o Skoog, D., Holler, J. y Nieman, T. "*Principios de análisis instrumental*", Ed. McGraw-Hill, 5ª ed., 2003.
- Valcárcel Cases, M. Y Gómez Hens, A. "Técnicas Analíticas de Separación", Ed. Reverté, 1994.
- o Cela, R., Lorenza, A. y Casais, M.C., "Técnicas de separación en Química Analítica", Ed. Síntesis.
- o Harris, D. C., "Análisis Químico Cuantitativo", Ed. Reverté, 3ª ed., 2007.
- o Skoog, D. A., West, D. M., "Análisis Instrumental", Ed. McGraw-Hill
- o Hernández, L y González, C. "Introducción al análisis instrumental", Ed. Ariel Ciencia. 2002.
- o Rubinson, K.A. y Rubinson, J.F. "Análisis Instrumental", Pearson Education S.S., 2000.

IX.- EVALUACIÓN

Las tutorías dirigidas, asistencia a clase de teoría y seminario, así como las prácticas de laboratorio son obligatorias. Para obtener una calificación del examen final escrito será necesario que el alumno haya participado al menos en el 70% de las actividades presenciales (tutorías dirigidas) y haya asistido al 70% de las clases teóricas y seminarios.

Química Analítica

La asignatura se considerará superada cuando en el cómputo total de calificaciones se alcance como mínimo un 5 (sobre 10). El sistema de evaluación será el mismo tanto en la convocatoria de junio como en la de septiembre.

■ EXÁMENES ESCRITOS:

60%

Se realizará un examen al final del semestre (febrero), y en la convocatoria de septiembre, que contribuirá en un 60% a la nota final. En este examen se propondrán problemas y cuestiones teóricas relacionadas con el temario de la asignatura. En cada examen se detallarán las puntuaciones otorgadas a cada cuestión y a cada problema. La calificación debe ser superior a 4 para computar en la nota final.

Competencias evaluadas: CG1, CG5, CE24, CE25, CT1, CT2 y CT8.

■ LABORATORIO:

10%

El laboratorio constituirá un 10% de la nota final de la asignatura. Se evaluará a través de un examen escrito (parte E), y del informe de prácticas y del trabajo en el laboratorio (parte P). Para aprobar el laboratorio es indispensable obtener una calificación superior a 4,5 sobre 10 en el examen escrito (nota E), así como una calificación superior a 5 (informe + trabajo en laboratorio) en un mínimo de ocho prácticas de las diez desarrolladas (nota P). La calificación final del laboratorio será el 60% E + 40% P. En el caso de que un alumno suspenda el laboratorio, sólo en el caso en que haya realizado la totalidad del mismo, tiene la posibilidad de aprobarlo en septiembre, examinándose de la parte suspensa: examen escrito (parte E) o examen práctico (parte P), manteniéndosele la parte superada hasta septiembre. El examen escrito consistirá en la resolución numérica con datos experimentales de situaciones reales de análisis. Será **indispensable** aprobar el laboratorio para poder superar la asignatura por curso.

Competencias evaluadas: CG5, CE24, CE25, CT1, CT2 y CT12.

■ TRABAJO PERSONAL:

20%

La evaluación del trabajo de aprendizaje individual realizado por el alumno contará un 20% de la nota y se realizará teniendo en cuenta tres factores:

- destreza del alumno en la resolución de los problemas y ejercicios propuestos, que se recogerán periódicamente en las clases presenciales.
- valoración del trabajo y participación en los seminarios asociados a teoría.
- evaluación de las tutorías en grupo, de asistencia obligatoria, en las que los conocimientos del alumno deben quedar palpables a través del problema a resolver propuesto por el profesor.

Competencias evaluadas: CG5, CE24, CT1, CT2 y CT8.

■ ACTIVIDADES DIRIGIDAS (TRABAJOS):

10%

Los alumnos desarrollarán en grupo reducido un trabajo entre los propuestos por el profesor. Si el profesor lo considera adecuado, el trabajo se expondrá en una clase presencial, en cuyo caso tras la exposición cada grupo se someterá a las preguntas de sus compañeros y/o del profesor sobre el tema. El profesor valorará el trabajo en su diseño, contenido, originalidad, discusiones, etc., así como la exposición y su defensa en el caso en que se realice. Esta actividad contará un 10% de la nota.

Competencias evaluadas: CE24, CE25, CT4, CT5, CT6, CT11 y CT12.

PLANIFICACIÓN DE ACTIVIDADES – CRONOGRAMA

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN
1 Química Analítica: concepto, objetivos y metodología	Clases Teoría	1	1	Semana 1	
1 Quinnea Anantica. concepto, objetivos y metodologia	Seminario				
2 Fundamentos del análisis volumétrico	Clases Teoría	1	1	Semana 1	
2 Fundamentos del anansis volumetrico	Seminario				
3 Volumetrías ácido-base	Clases Teoría	2	1	Semana 1	Semana 2
5 Volumetrias acido-base	Seminario	2	2	Semana 2	
4 Volumetrías de formación de complejos	Clases Teoría	2	1	Sema	ana 3
4 Volumetrias de formación de complejos	Seminario	2	2	Semana 3	Semana 4
	Tutoría programada*	1	4	Sema	ana 3
5 Volumetrías de precipitación	Clases Teoría	1	1	Semana 4	
3 Volumetrias de precipitación	Seminario	1	2	Semana 4	
6 Gravimetrías	Clases Teoría	1	1	Semana 5	
0 Gravinieuras	Seminario	1	2	Semana 5	
7 Volumetrías de oxidación-reducción	Clases Teoría	2	1	Semana 5	Semana 6
7 Y OTUINEST TAS UE UNIUACION-I EUUCCION	Seminario	1	2	Semana 6	
8 Técnicas instrumentales de análisis	Clases Teoría	3	1	Semana 6	Semana 7
0 I cemeas mistrumentaies de anansis	Seminario	1	2	Sema	ana 7

Química Analítica

TEMA	ACTIVIDAD	HORAS	GRUPOS	INI	CIO	
	Tutoría programada	1	4	Semana 6		
0 Introducción a las técnicos aspectroscónicos	Clases Teoría	2	1	Sema	ana 8	
9 Introducción a las técnicas espectroscópicas	Seminario	0				
10 Instrumentes para espectroscopio éntico	Clases Teoría	2	1	Semana 8	Semana 9	
10 Instrumentos para espectroscopia óptica	Seminario		1	Semana 8	Semana 9	
11 Espectroscopia de absorción molecular ultravioleta-	Clases Teoría	2	1	Sema	ana 9	
visible e infrarroja	Seminario	1	2	Sema	na 10	
12 Espectroscopia de luminiscencia molecular	Clases Teoría	1	1	Semana 10		
	Seminario					
13 Espectroscopia atómica: técnicas de absorción y emisión	Clases Teoría	2	1	Semana 10	Semana 11	
emision	Seminario	2	2	Semana 11		
	Tutoría programada*	1	4	Semana 10		
14 Introducción a la guímica alcotrocondítico	Clases Teoría	4	1	Semana 12	Semana 13	
14 Introducción a la química electroanalítica	Seminario	1	2	Semana 13		
15 Támigos analíticos do sanavación	Clases Teoría	4	1	Semana 13	Semana 14	
15 Técnicas analíticas de separación	Seminario	3	2	Semana 15		
	Tutoría programada*	1	4	Sema	na 15	

^{*} Las tutorías programadas están sujetas a posibles modificaciones según la planificación conjunta del curso.

PRÁCTICAS DE LABORATORIO							
		HORAS	INICIO	FIN			
			16 noviembre	19 noviembre			
GRUPO A:	Lunes y Martes Tarde 3 horas		22 noviembre	23 noviembre			
Horario: Duración sesión:		10 sesiones de prácticas	29 noviembre	30 noviembre			
			13 diciembre	14 diciembre			
			20 diciembre	21 diciembre			
			11 noviembre	12 noviembre			
GRUPO B:	Miércoles y Jueves		18 noviembre	19 noviembre			
Horario:	Tarde 3 horas	10 sesiones de prácticas	25 noviembre	26 noviembre			
Duración sesión:			2 diciembre	3 diciembre			
			9 diciembre	10 diciembre			
Seminarios asociad	os a laboratorio	6 sesiones					

RESUMEN DE LAS ACTIVIDADES

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total	C
Clases de teoría	CG1, CG5, CE24, CE25, CT1, CT2, CT8	Exposición de conceptos teóricos.	Toma de apuntes.	Calificación de las respuestas realizadas por escrito a preguntas relacionadas con los conceptos teóricos explicados.	30	55	85	
Seminarios	CG1, CG5, CE24, CE25, CT1, CT2, CT8	Aplicación de la teoría a la resolución de ejercicios y problemas.	Toma de apuntes. Realización de ejercicios. Formulación de preguntas y dudas.	Calificación de las respuestas (planteamiento y resultado) realizadas por escrito para la resolución de ejercicios prácticos y problemas numéricos.	21	29	50	
Actividades dirigidas	CE24, CE25, CT4, CT5, CT6, CT11, CT12	Elaboración y propuesta de trabajos.	Elaboración por escrito de trabajos individuales.	Valoración del trabajo.				10%
Tutorías/ Trabajo personal	CG5, CE24, CT1, CT2, CT8	Ayuda al alumno a dirigir su estudio con explicaciones y recomendaciones bibliográficas. Propuesta de problema numérico.	Consulta al profesor sobre las dificultades conceptuales y metodológicas que encuentra al estudiar la materia. Entregar de problemas numéricos resueltos en casa. Resolución de problema numérico propuesto en tutoría.	Calificación de los problemas entregados y del problema numérico propuesto.	4 6		10	20%

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total	C
Laboratorios	CG5, CE24, CE25, CT1, CT2, CT12	Enseñanza de la manipulación de reactivos químicos con seguridad, del material de laboratorio y del manejo de instrumentación analítica.	Toma de apuntes relacionados con la práctica, toma de datos de los experimentos realizados y evaluación de los resultados. Realización de una memoria de la práctica.	Calificación de las respuestas realizadas por escrito a preguntas relacionadas con los conceptos teóricos-prácticos explicados, calificación del informe entregado y calificación del trabajo experimental en el laboratorio.	30	22,5	52,5	10%
Exámenes	CG1, CG5, CE24, CE25, CT1, CT2, CT8	Propuesta, vigilancia y corrección del examen. Calificación del alumno.	Preparación y realización.	Calificación de un examen escrito al final del semestre.	8	19,5	27,5	60%

P: Presenciales; NP: no presenciales (trabajo autónomo); C: calificación