

QUÍMICA BÁSICA

FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2010-2011

Química Básica

I.- IDENTIFICACIÓN

NOMBRE DE LA ASIGNATURA: Química Básica CARÁCTER: Obligatoria MATERIA: Química

MÓDULO: Materias básicas

TITULACIÓN: Grado en Ingeniería Química

SEMESTRE/CUATRIMESTRE: Anual (primer curso)
DEPARTAMENTO/S: Química Inorgánica I

PROFESOR/ES RESPONSABLE/S:

Coordinador de la asignatura Profesor: Departamento: Despacho: e-mail:		JULIO RAMÍREZ CASTELLANOS Química Inorgánica I QA-132 <u>jrcastel@quim.ucm.es</u>		
Coordinadora del laboratorio	Profesora: Departamento: Despacho: e-mail:	MARINA PARRAS VÁZQUEZ Química Inorgánica I QA-205 mparras@quim.ucm.es		

Grupo A1				
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	CARLOS PICO MARÍN Química Inorgánica I QA-108 cpico@quim.ucm.es		
Teoría Seminario Tutoría	Profesora: Departamento: Despacho: e-mail:	Mª LUISA LÓPEZ GARCÍA Química Inorgánica I QA-114 marisal@quim.ucm.es		

	Grupo A2				
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	JULIO RAMÍREZ CASTELLANOS Química Inorgánica I QA-132 <u>ircastel@quim.ucm.es</u>			

II.- OBJETIVOS

■ OBJETIVO GENERAL

El principal objetivo es establecer las bases del conocimiento de la constitución de la materia, los tipos de interacciones entre átomos que dan lugar a los diferentes

Química Básica

compuestos químicos, las principales propiedades de elementos y compuestos y sus transformaciones.

Además, el alumno debe adquirir habilidades en el manejo del material y las operaciones básicas dentro de un laboratorio de química, así como aprender a relacionar la naturaleza de los compuestos inorgánicos y la forma de sintetizarlos.

■ OBJETIVOS ESPECÍFICOS

- o Relacionar las propiedades de los elementos con su configuración electrónica y establecer la variación de dichas propiedades a lo largo del sistema periódico.
- o Conocer los distintos tipos de enlace y las teorías empleadas para describirlos.
- o Relacionar las propiedades de las especies químicas con el tipo de enlace.
- Comprender los principios termodinámicos que gobiernan las transformaciones químicas.
- o Aplicar los principios cinéticos al estudio de las reacciones químicas.
- o Conocer las propiedades de especies químicas de relevancia industrial, sus aplicaciones, métodos de obtención e implicaciones medioambientales.
- o Adquirir destreza en las operaciones básicas de laboratorio.
- Conocer, de forma adecuada, las normas de seguridad a observar en el trabajo de laboratorio.
- o Realizar la síntesis de compuestos inorgánicos.

III.- CONOCIMIENTOS PREVIOS Y RECOMENDACIONES

■ CONOCIMIENTOS PREVIOS:

Nomenclatura y formulación química. Cálculos estequiométricos. Formas de expresar la concentración.

■ RECOMENDACIONES:

Haber cursado matemáticas, química y física en segundo de bachillerato.

IV.- CONTENIDOS

■ BREVE DESCRIPCIÓN DE LOS CONTENIDOS:

Estructura atómica. Propiedades periódicas. Enlace. Termodinámica de los procesos químicos. Cinética de los procesos químicos. Estructura y comportamiento de los elementos químicos. Compuestos químicos de interés.

■ PROGRAMA:

TEÓRICO:

Tema 1: Estructura atómica: nuclear y electrónica

Estructura del átomo. Orbitales atómicos. Carga nuclear efectiva.

Química Básica

Tema 2: Tabla periódica de los elementos

Configuraciones electrónicas. Propiedades periódicas.

Tema 3: Enlace químico

Enlace covalente. Estereoquímica molecular. Enlace metálico. Enlace iónico. Aspectos energéticos y estructurales. Fuerzas intermoleculares.

Tema 4: Termodinámica y cinética de las reacciones químicas

Primer principio de la termodinámica: energía interna y entalpía. Ley de Hess. Segundo principio de la termodinámica: entropía y espontaneidad. Equilibrio de una reacción química. Velocidad de reacción. Ecuación de Arrhenius.

Tema 5: Equilibrios en disolución

Equilibrio ácido-base. Equilibrios de precipitación. Equilibrios de oxidación-reducción. Pilas y electrolisis. Ecuación de Nernst.

Tema 6: Química de los elementos y de sus compuestos más representativos

Hidrógeno y elementos del bloque p. Hidruros de los elementos no metálicos. Haluros de los elementos no metálicos. Óxidos, oxoácidos y oxosales de los elementos no metálicos. Elementos metálicos. Hidruros, haluros y óxidos de los elementos metálicos.

<u>Tema 7</u>: Ejemplos seleccionados de procesos industriales de obtención de productos químicos y efectos medioambientales

Obtención de amoníaco. Obtención de ácido nítrico. Obtención de ácido fosfórico. Obtención de ácido sulfúrico. Lluvia ácida. Obtención de metales.

Tema 8: Silicatos naturales y sintéticos: zeolitas

Clasificación. Silicatos laminares. Silicatos tridimensionales. Zeolitas: aplicaciones.

Tema 9: Introducción a los compuestos de coordinación

Aspectos generales, nomenclatura, estereoquímica e isomería. Enlace y propiedades. Aplicaciones catalíticas.

PRÁCTICO:

Operaciones básicas en el laboratorio: reactividad, manejo y normas de seguridad

- 1. Material de laboratorio y seguridad.
- 2. Preparación de disoluciones.
- 3. Solubilidad y técnicas de filtración.
- 4. Reactividad: procesos de precipitación y de oxidación-reducción.
- 5. Obtención de ácido nítrico.
- 6. Valoración de una disolución de ácido nítrico.
- 7. Obtención de sulfato de hierro(II) heptahidratado.
- 8. Obtención de la sal de Mohr.
- 9. Obtención de cloruro de diclorurobis(etano-1,2-diamina)cobalto(III).

Química Básica

V.- COMPETENCIAS

GENERALES:

o CG1: Utilizar conceptos de materias básicas y tecnológicas que le

capacite para el aprendizaje autónomo de nuevos métodos v

teorías y para abordar nuevas situaciones.

ESPECÍFICAS:

O CE4: Aplicar conceptos básicos de la química a la ingeniería.

o CE4-QB1: Utilizar la nomenclatura de los principales compuestos

inorgánicos, ajustes de reacciones químicas y realizar cálculos

estequiométricos.

o **CE4-QB2:** Aplicar los conceptos relativos a la constitución de la materia, tipo

de enlace predominante e interpretar propiedades físico-químicas

relacionadas.

o **CE4-QB3:** Utilizar los conceptos de equilibrio químico, con especial énfasis

en los sistemas en disolución, y resolver problemas numéricos.

o CE4-QB4: Interpretar procesos de interés industrial de elementos y

compuestos, a partir de criterios termodinámicos y cinéticos

básicos y en la reactividad de los sistemas.

• **CE4-QB5:** Manejar con seguridad los materiales y reactivos del laboratorio.

■ TRANSVERSALES:

o CT1: Demostrar capacidad de análisis y síntesis.

o CT7: Trabajar en equipo demostrando capacidad para las relaciones

interpersonales.

Demostrar capacidad para el razonamiento crítico y autocrítico.

o CT10: Integrar los conocimientos adquiridos y aplicarlos a la resolución

de problemas reales.

o **CT11:** Aprender de forma autónoma.

VI. – HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos	
Clases teóricas	37	70	4,3	
Tutorías/Trabajos dirigidos	4	6	0,4	
Laboratorios	34	26	2,4	
Seminarios (teoría + laboratorio)	12 (8+4)	13	1,0	
Preparación de trabajos y exámenes	6	17	0,9	
Total	93	132	9,0	

Química Básica

VII.- METODOLOGÍA

Los contenidos de la asignatura se presentan a los alumnos en cuatro tipos de actividades: clases presenciales de teoría, seminarios, tutorías dirigidas y prácticas de laboratorio.

Las <u>clases presenciales de teoría</u> son expositivas y se imparten a cada uno de los grupos (A1 y A2) completos. Al comienzo de cada tema se expondrán el contenido y objetivos principales del mismo. En estas clases se suministrará al alumno la información necesaria para el adecuado desarrollo de los contenidos de la asignatura. Durante la exposición del contenido se propondrán cuestiones que ejemplifiquen los conceptos desarrollados y/o que sirvan de introducción a nuevos contenidos.

Para facilitar la labor del alumno se le proporcionará el material complementario adecuado en el campus virtual.

La elaboración, por parte del alumno, de temas o partes de los mismos con las pautas dadas en las clases presenciales, contribuye a la consecución de la competencia general CG1 y también de las competencias transversales CT8 y CT11.

En el desarrollo de los temas reflejados en el programa de la asignatura, bien sea en clases expositivas o en actividades con participación activa del alumno, se cubre perfectamente la formación del alumno en lo que respecta a las competencias específicas CE4-QB2, CE4-QB3 y CE4-QB4.

Los <u>seminarios</u> que se imparten a cada grupo tienen como objetivo aplicar y asentar los conocimientos adquiridos en las clases presenciales de teoría y en el trabajo propio del alumno. En las sesiones de seminario se resolverán, de forma interactiva, problemas y cuestiones planteados con anterioridad. La participación del alumno en estos seminarios fomenta especialmente el sentido crítico del alumno, aspecto contemplado en la competencia transversal CT8 y propicia el autoaprendizaje, citado en la competencia transversal CT11.

En las <u>tutorías dirigidas</u>, cada grupo de teoría se divide en dos subgrupos. Para potenciar el desarrollo del trabajo autónomo del alumno y controlar de forma objetiva el trabajo personal realizado por él, éste deberá desarrollar, de forma individual y/o en grupo, **trabajos** sobre aspectos concretos de la asignatura fuera de las horas presenciales, que discutirá en sesiones de tutorías programadas de forma periódica y que entregará o expondrá para su evaluación, actividad que redunda, además de en la adquisición de conocimientos relacionados con alguna de las competencias específicas, en la de las competencias transversales CT1, CT7, CT8, CT10 y CT11.

Las <u>prácticas de laboratorio</u> se desarrollan en diez sesiones. Cuatro de las sesiones, de 4 h, se imparten en el primer cuatrimestre y las seis restantes, de 3,5 h, en el segundo cuatrimestre. Cada grupo de teoría se divide en subgrupos de, aproximadamente, 8-10 alumnos en el primer semestre, y de 12 alumnos en el segundo semestre, para realizar las prácticas y cada uno de los grupos las desarrolla durante dos días consecutivos, en dos semanas en el primer cuatrimestre y en tres semanas durante el segundo. Los alumnos reciben seminarios en los que se plantea el trabajo a realizar durante las sesiones de laboratorio. En cada una de las sesiones, el profesor dedicará un tiempo a comentar cómo se van a realizar o cómo se han realizado las experiencias y los resultados obtenidos, lo que también redundará en potenciar el razonamiento crítico y autocrítico en el alumno (CT8). Para ayudar al alumno en el desarrollo del trabajo experimental se le facilitan guiones de prácticas en el campus virtual.

Química Básica

En el desarrollo de todas las actividades, el alumno se encontrará con multitud de especies químicas y reacciones en las que se ven involucradas. El rigor al nombrar y formular dichas especies, el ajuste de las correspondientes reacciones y los cálculos estequiométricos realizados aseguran la adquisición de la competencia específica CE4-QB1.

VIII.- BIBLIOGRAFÍA

■ BÁSICA:

- o Chang; R.: "Química", 9ª ed., Ed. McGraw-Hill, 2007.
- o Housecroft, C. E. y Sharpe, A. G.: "*Inorganic Chemistry*", 3ª ed., Prentice Hall, 2008. (Traducción de la 2ª edición; Ed. Prentice-Hall, 2006).

■ COMPLEMENTARIA:

- o Gutiérrez Ríos, E.: "Química Inorgánica", 2ª ed., Reverté, 1984.
- o Huheey, J. G.; Keites, E. A. y Keites, R.L.: "Inorganic Chemistry. Principles of Structure and Reactivity", 4th ed., Hasper Collins, 1993.
- Petrucci, R. H.; Harwood, W. S. y Herring, F. G.: "Química General. Enlace Químico y Estructura de la Materia" (Vol. 1). "Reactividad Química. Compuestos Inorgánicos y Orgánicos" (Vol. 2), 8ª ed., Prentice-Hall, 2003.
- Shriver, D. F.; Atkins, P. W; Overton, T.; Rourke, J.; Weller, M. y Armstrong, F.: "Química Inorgánica", 4ª ed., Reverté, 2006.

IX.- EVALUACIÓN

El rendimiento académico del alumno y la calificación final de la asignatura se computarán, de forma ponderada, atendiendo a los porcentajes que se muestran en cada uno de los aspectos recogidos posteriormente, debiendo alcanzar una calificación global igual o superior a cinco para superar la asignatura. Todas las calificaciones estarán basadas en la puntuación absoluta sobre 10 puntos, y de acuerdo con la escala establecida en el RD 1125/2003.

Este criterio se mantendrá en todas las convocatorias.

Para poder realizar el examen final escrito será necesario que el alumno haya participado, al menos, en el 70 % de las actividades presenciales teóricas. La asistencia a todas las sesiones de laboratorio es obligatoria.

EXÁMENES ESCRITOS:

70% (60% teoría, 10% laboratorio)

La evaluación de los conocimientos adquiridos en la parte teórica de la asignatura se llevará a cabo mediante la realización de un examen final escrito. Se realizarán dos exámenes parciales, cada uno al final de cada semestre. Los alumnos que obtengan una nota mínima de 4,5 en cada uno de los exámenes parciales estarán exentos de

Guía Docente: Química Básica

presentarse al examen final de la asignatura en la convocatoria de junio. La calificación obtenida en el examen final sustituirá las obtenidas en los parciales.

Para poder superar la asignatura, ponderando el conjunto de las actividades docentes, será requisito imprescindible obtener una calificación superior a 4,0 sobre 10 en la parte teórica.

En la parte práctica de la asignatura se realizará un examen al completar las sesiones de laboratorio (convocatoria ordinaria), en el que será necesario alcanzar una puntuación de 4,5 para acceder a la calificación final de la asignatura. Los alumnos que no hayan superado esta calificación en la convocatoria de junio podrán realizar un examen de prácticas en la convocatoria extraordinaria de septiembre.

Con el examen se valorará la consecución de las competencias específicas CE4-QB1, CE4-QB2, CE4-QB3, CE4-QB4 y CE4-QB5.

■ TRABAJO PERSONAL:

10%

La evaluación del trabajo de aprendizaje individual realizado por el alumno se llevará a cabo teniendo en cuenta los siguientes factores:

- Destreza del alumno en la resolución de los problemas y ejercicios propuestos, que se recogerán periódicamente.
- Valoración del trabajo del alumno en los seminarios.
- Evaluación de las tutorías programadas en grupo, de asistencia obligatoria, e individuales, voluntarias.

La evaluación de estos aspectos permitirá conocer el grado de consecución de la competencia general CG1 y de la transversal CT10.

■ ACTIVIDADES DIRIGIDAS (TRABAJOS):

10%

Los alumnos desarrollarán, en grupos, un trabajo que será juzgado por sus propios compañeros y por el profesor, lo que permitirá evaluar el grado de adquisición de las competencias transversales CT1, CT7, CT8, CT10 y CT11.

■ PRÁCTICAS DE LABORATORIO:

10%

Se valorará la realización de las experiencias, los resultados obtenidos y la forma en que el alumno los presente e interprete. Esta actividad afianzará los conocimientos adquiridos por el alumno, tanto en las clases presenciales de teoría, como en las restantes actividades del curso, lo que redunda en el afianzamiento de las competencias específicas CE4-QB1, CE4-QB2, CE4-QB3, CE4-QB4 y CE4-QB5, amén de reforzar la competencia transversal CT10.

Para superar la asignatura será requisito imprescindible obtener una calificación en las prácticas de laboratorio superior a 4,5 sobre 10 para acceder a la calificación final de la asignatura. Los alumnos que no hayan superado esta calificación en la convocatoria de junio podrán realizar un examen de prácticas en la convocatoria extraordinaria de septiembre.

Química Básica

PLANIFICACIÓN DE ACTIVIDADES – CRONOGRAMA

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN
1. Estructura atómica: nuclear y electrónica	Teoría	1,5	1	1ª Semana	1ª semana
2. Tabla periódica de los elementos	Teoría	1,5	1	1ª Semana	2ª semana
2 Enlace químico	Teoría	4	1	2ª Semana	4ª Semana
3. Enlace químico	Seminario	1	1	4ª Se	mana
	Tutoría programada*	1	2	5ª Se	mana
4. Tormodinámico y sinático do los recesiones syámicos	Teoría	5	1	5ª Semana	7ª Semana
4. Termodinámica y cinética de las reacciones químicas	Seminario	1	1	7ª Semana	
5 Egyilibriog on digolygión	Teoría	3	1	8ª Semana	9ª Semana
5. Equilibrios en disolución	Seminario	1	1	9ª Semana	
	Tutoría programada*	1	2	10ª Semana	
6. Química de los elementos y de sus compuestos más	Teoría	16	1	10ª Semana	19ª Semana
representativos	Seminario	2	1	20ª Semana	21ª Semana
	Tutoría programada*	1	2	21ª Semana	
7. Ejemplos seleccionados de procesos industriales de	Teoría	1	1	22ª Semana	
obtención de productos químicos y efectos medioambientales	Seminario 1 1		23ª Semana		
	Tutoría programada*	1	2	23ª Se	emana

Química Básica

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	
8. Silicatos naturales y sintéticos: zeolitas	Teoría	2	1	24ª Semana	25ª Semana
	Seminario	1	1	26ª Semana	26ª Semana
9. Introducción a los compuestos de coordinación	Teoría	3	1	27ª Semana	29ª Semana
	Seminario	1	1	30ª Semana	30ª Semana

LABORATORIOS						
Prácticas de laboratorio	Sesiones de laboratorio	16(*) 4		1° semestre		
	Sesiones de laboratorio	21(*)	3	2° semestre		
(*) Los seminarios de prácticas están incluidos en este tiempo.						
PLANIFICACIÓN POR GRUPO DE TEORÍA						

^{*} Las tutorías programadas están sujetas a posibles modificaciones según la planificación conjunta del curso.

Química Básica

RESUMEN DE LAS ACTIVIDADES

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación		NP	Total	C
Clases de teoría	CG1, CE4-QB2, CE4-QB3, CE4- QB4, CT8, CT11	Exposición de conceptos teóricos.	 Toma de apuntes. Resolución de cuestiones. Desarrollo de nuevas propuestas. Formulación de preguntas y dudas. 	Calificación de las respuestas realizadas por escrito a preguntas relacionadas con los conceptos teóricos explicados.	37	70	107	10 %
Seminarios	CT8, CT11	Aplicación de la teoría a la resolución de ejercicios y problemas.	Toma de apuntes. Realización de ejercicios. Formulación de preguntas y dudas.	Calificación de las respuestas (planteamiento y resultado) realizadas por escrito para la resolución de ejercicios prácticos y problemas numéricos.	8	13	21	
Tutorías dirigidas /Trabajos	CT1, CT7, CT8, CT10, CT11	Elaboración y propuesta de trabajos.	Elaboración por escrito de trabajos individuales y/o en grupo.	Valoración del trabajo.		6	10	10 %
Prácticas de laboratorio (con seminarios)	CE4-BQ1, CT8	 Impartición de los seminarios. Realización de experiencias habituales en un laboratorio de química, incluyendo síntesis de algunos compuestos. 	Planificación de las experiencias a realizar, desarrollo de las mismas y evaluación crítica de los resultados obtenidos.	Valoración de la destreza manual en la realización de las experiencias y de la observación e interpretación de los resultados obtenidos.		26	64	10 %
Exámenes	CE4-QB1, CE4- QB2, CE4-QB3, CE4-QB4, CT1, CT10	 Propuesta, vigilancia y corrección del examen. Calificación del alumno. 	Preparación y realización.	Evaluación de las respuestas del alumno.	6	17	23	70 %

P: Presenciales; NP: no presenciales (trabajo autónomo); C: calificación