

FÍSICA GENERAL

FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2012-2013

Física General

I.- IDENTIFICACIÓN

NOMBRE DE LA ASIGNATURA: Física General CARÁCTER: Formación Básica

MATERIA: Física MÓDULO: Básico

TITULACIÓN: Grado de Química SEMESTRE/CUATRIMESTRE: Anual (primer curso) DEPARTAMENTO/S: Física de Materiales

Física Atómica, Molecular y Nuclear

(Facultad de Ciencias Físicas)

PROFESOR/ES RESPONSABLE/S:

Coordinadores de la asignatura (primer cuatrimestre)		Profesores Departame Despachos e-mail:	ento:	ANA URBIETA QUIROGA ÓSCAR RODRIGUEZ DE LA FUENTE Física de Materiales 126, 2ª planta 210, 2ª planta anaur@fis.ucm.es oscar.rodriguez@fis.ucm.es		
Coordinadora de la asignatura (segundo cuatrimestre)		Profesora: Departame Despacho: e-mail:	ento:	ELVIRA Mª GONZÁLEZ HERRERA Física de Materiales 212, 2ª planta cygnus@fis.ucm.es		
Coordinador del I laboratorio I		Profesor: Departame Despacho: e-mail:		ÓSCAR RODRIGUEZ DE LA FUENTE Física de Materiales 210, 2ª planta oscar.rodriguez@fis.ucm.es		
				Grupo A		
1 ^{er} Cuatrimestre Teoría Seminario Tutorías	Profe Depa Despa e-mai	rtamento: acho:	Física 212, 2	NTZAZU MASCARAQUE SUSANAGA a de Materiales 2ª planta zazu.mascaraque@fis.ucm.es		
2º Cuatrimestre Teoría Seminario Tutorías	Teoría Departamento: Física Despacho: 114, 2			ARMEN SÁNCHEZ TRUJILLO a de Materiales 2ª planta uji@fis.ucm.es		
Grupo B						
Teoría Departamento: Físic Seminario Despacho: 120,			Física 120, 2	ER DEL RÍO ESTEBAN a de Materiales 2ª planta o@fis.ucm.es		

Física General

2º Cuatrimestre	Profesor:	JAVIER DEL RÍO ESTEBAN					
		Física de Materiales					
Teoría	Departamento:						
Seminario	Despacho:	120, 2ª planta					
Tutorías	e-mail:	jdelrio@fis.ucm.es					
Grupo C							
1 ^{er} Cuatrimestre	Profesor:	ÓSCAR RODRIGUEZ DE LA FUENTE					
Teoría	Departamento:	Física de Materiales					
Seminario	Despacho:	210, 2ª planta					
Tutorías	e-mail:	oscar.rodriguez@fis.ucm.es					
Tutorias							
	Profesores:	PEDRO HIDALGO ALCALDE					
		ANA URBIETA QUIROGA					
2º Cuatrimestre	Departamento:	Física de Materiales					
Teoría	Despachos:	211, 2ª planta					
Seminario		126, 2ª planta					
Tutorías	e-mail:	phidalgo@fis.ucm.es					
		anaur@fis.ucm.es					
	-						
		Grupo D					
1 ^{er} Cuatrimestre	Profesor:	ÓSCAR RODRÍGUEZ DE LA FUENTE					
Teoría	Departamento:	Física de Materiales					
Seminario	Despacho:	210, 2ª planta					
Tutorías	e-mail:	oscar.rodriguez@fis.ucm.es					
Tutorias							
	Profesores:	CÉSAR FERNANDEZ					
		VALERIA SCAPIN					
		JACOBO CAL					
2º Cuatrimestre	Departamento:	Física Atómica, Molecular y Nuclear					
Teoría	Despacho:	227, 3ª planta					
Seminario		237, 3ª planta					
Tutorías		235, 3ª planta					
1 utorias	e-mail:	cesar.fernandez.ramirez@fis.ucm.es					
		valeria.scapin@gmailcom					
		jacobo@nuclear.fis.ucm.es					
		Grupo E					
	Profesores:	PEDRO HIDALGO ALCALDE					
4er o		ANA URBIETA QUIROGA					
1 ^{er} Cuatrimestre	Departamento:	Física de Materiales					
Teoría	Despachos:	211, 2ª planta					
Seminario		126, 2ª planta					
Tutorías	e-mail:	phidalgo@fis.ucm.es					
		anaur@fis.ucm.es					
2º Cuatrimestre	Profesora:	Mª CARMEN SÁNCHEZ TRUJILLO					
Teoría	Departamento:	Física de Materiales					
Seminario	Despacho:	114, 2ª planta					
Tutorías	e-mail:	santruji@fis.ucm.es					
f and the second se							

Física General

	Grupo F						
1er Cuatrimestre Teoría Seminario Tutorías	Profesor: Departamento: Despacho: e-mail:	JUAN ABEL BARRIO UÑA Física Atómica, Molecular y Nuclear 211, 3ª planta barrio@gae.ucm.es					
2º Cuatrimestre Teoría Seminario Tutorías	Profesora: Departamento: Despacho: e-mail:	ELVIRA Mª GONZÁLEZ HERRERA Física de Materiales 212, 2ª planta cygnus@fis.ucm.es					

II.- OBJETIVOS

OBJETIVO GENERAL

Los objetivos que persigue la enseñanza de la asignatura de *Física General* son que el alumno adquiera:

- Los conocimientos de Física requeridos por las enseñanzas del resto de la carrera, más los que resulten necesarios para respetar la estructura lógica propia de la disciplina y para adaptarse a la formación previa del alumno.
- La capacidad de aplicar dichos conocimientos, concretada en la adquisición de las aptitudes necesarias para, ante casos particulares, poder:
 - Identificarlos con los modelos teóricos.
 - Reconocer las variables físicas relevantes al fenómeno descrito.
 - Aplicar las leyes y principios generales.
 - Interpretar las condiciones físicas específicas y formularlas cuantitativamente.
 - Adquirir hábitos de experimentación.
 - Adquirir hábitos de interpretación y análisis, valorando resultados e identificando las implicaciones y relaciones que contengan.

Se pretende dotar al estudiante de:

- (1) Capacidad instrumental para asimilar las disciplinas de la carrera que se apoyan en la materia de la asignatura.
- (2) Capacidad de aplicar los modelos teóricos de la materia de la asignatura en contextos reales y de valorar críticamente los resultados de la aplicación.
- (3) Rigor, agilidad y hábito en el uso de la metodología científico-técnica propia de la materia de la asignatura para la formación posterior y para el ejercicio profesional.

■ OBJETIVOS ESPECÍFICOS

Entre los objetivos específicos se pueden destacar los siguientes:

- o Tener un conocimiento claro de las magnitudes físicas fundamentales y derivadas y de las unidades empleadas.
- o Consolidar los conocimientos sobre los principios de la Mecánica de Newton.

Física General

- Relacionar las magnitudes trabajo y energía y saber resolver problemas atendiendo a criterios puramente energéticos.
- Adquirir los conocimientos básicos relativos al concepto de campo, haciendo énfasis en los campos eléctrico y magnético y también en las fuerzas y potenciales electrostáticos relacionados con los producidos por los iones y dipolos moleculares.
- o Aplicar el concepto de campo al estudio del campo eléctrico producido por cargas eléctricas y al estudio del campo magnético producido por cargas en movimiento.
- O Estudiar el comportamiento de cargas y corrientes eléctricas en el interior de campos eléctricos y magnéticos.
- o Estudiar las ondas mecánicas y electromagnéticas como portadoras de energía y cantidad de movimiento.
- o Conocer la radiación electromagnética y el espectro electromagnético.
- o Comprender los fundamentos de la óptica física, en particular los fenómenos de interferencia y difracción de las ondas.

III.- CONOCIMIENTOS PREVIOS Y RECOMENDACIONES

■ CONOCIMIENTOS PREVIOS:

Es conveniente que los alumnos que se matriculen en esta asignatura hayan cursado estudios de Física y Matemáticas en el último año de Bachillerato. Asimismo, es conveniente que el alumno posea conocimientos de cálculo vectorial y cálculo diferencial e integral.

■ RECOMENDACIONES:

IV.- CONTENIDOS

■ BREVE DESCRIPCIÓN DE LOS CONTENIDOS:

Magnitudes, unidades y análisis dimensional. Mecánica y leyes de Newton. Trabajo y energía. Sistemas de partículas. Fluidos. Movimiento oscilatorio y ondulatorio: ondas mecánicas y ondas electromagnéticas. Campo y potencial eléctrico. Campo magnético y inducción magnética. Óptica ondulatoria.

■ PROGRAMA:

PRIMER PARCIAL

Tema 1: Sistemas de unidades y vectores

- Magnitudes. Sistemas de unidades.
- Análisis dimensional.
- Vectores: definición y sistemas de referencia.
- Operaciones con vectores.
- Componentes cartesianas de un vector. Vector unitario.

Física General

Tema 2: Cinemática de una partícula

- Vector de posición, velocidad y aceleración.
- Clasificación de los movimientos.

Tema 3: Dinámica de una partícula. Leyes de Newton

- Leyes de Newton.
- Tipos de fuerza más importantes.
- Impulso de una fuerza.
- Dinámica del movimiento circular: componentes de la fuerza.

Tema 4: Trabajo y energía

- Trabajo.
- Potencia.
- Energía cinética.
- Energía potencial: campos de fuerzas conservativos.
- Principio de conservación de la energía mecánica.
- Fuerzas no conservativas: principio de conservación de la energía.
- Teorema del trabajo-energía.
- Discusión de las curvas de energía potencial.

Tema 5: Sistema de partículas I: momento lineal y colisiones

- Centro de masas (CM). Cálculo del CM de sistemas de partículas discretos.
- Movimiento de traslación del CM del sistema de partículas.
- Conservación del momento lineal.
- Energía de un sistema de partículas: conservación de la energía.
- Colisiones.

Tema 6: Sistemas de partículas II: momento angular y rotación

- Movimiento de rotación del CM del sistema de partículas: momento de una fuerza, momento de inercia y momento angular.
- Dinámica de la rotación del sistema de partículas.
- Conservación del momento angular.
- Energía cinética de rotación.

Tema 7: Fluidos

- Presión en un punto de un fluido.
- Viscosidad.
- Fluidos en movimiento:
 - o Principio de conservación de la materia: ecuación de continuidad.
 - o Principio de conservación de la energía mecánica: ecuación de Bernouilli.
 - Ampliación del principio de la conservación de la energía al caso de fluidos viscosos: ecuación de Poiseuille.
- Tensión superficial. Capilaridad.

Tema 8: Movimiento oscilatorio

- Definición del movimiento armónico simple (MAS).
- Fuerza elástica: ley de Hooke.
- Ecuación general de un MAS. Parámetros que definen un MAS.
- Energía potencial, cinética y mecánica del MAS.

Física General

- Algunos sistemas oscilantes: objeto colgado de un muelle vertical y el péndulo simple.

SEGUNDO PARCIAL

Tema 9: Movimiento ondulatorio

- Definición de onda. La función de onda.
- Tipos de ondas.
- Velocidad de las ondas. La ecuación de onda.
- Ondas armónicas.
- Ondas y Barreras.
- Principio de superposición de ondas.
- Interferencia de ondas armónicas.
- Ondas estacionarias.

Tema 10: Propiedades de la luz

- Ondas electromagnéticas. Espectro electromagnético.
- Espectros de luz.
- Fuentes luminosas. Absorción, dispersión y emisión estimulada.
- Propagación de la luz. Principios de Huygens y Fermat.
- Reflexión y refracción.
- Fenómenos de interferencia.
- Fenómenos de difracción.

Tema 11: Campo eléctrico

- Carga eléctrica.
- Conductores y aislantes.
- Ley de Coulomb.
- El campo eléctrico.
- Líneas de campo eléctrico.
- Movimiento de cargas puntuales en campos eléctricos.
- Dipolos eléctricos.
- Flujo eléctrico.
- Ley de Gauss. Aplicaciones para el cálculo del campo eléctrico.
- Carga y campo en la superficie de los conductores.

Tema 12: Potencial eléctrico y energía electrostática

- Energía potencial electrostática. Potencial eléctrico.
- Potencial y líneas de campo eléctrico.
- Potencial debido a sistemas de cargas puntuales.
- Determinación del campo eléctrico a partir del potencial. Relación general entre el campo y el potencial.
- Cálculo del potencial para distribuciones continuas de carga.
- Superficies equipotenciales. Ruptura dieléctrica.
- Condensadores.
- Almacenamiento de la energía eléctrica.
- Dieléctricos.

Tema 13: Corriente eléctrica y circuitos de corriente continua

Corriente eléctrica y movimiento de cargas.

Física General

- Ley de Ohm y resistencia.
- Energía eléctrica y potencia eléctrica.
- Fuerza electromotriz en un circuito.
- Combinaciones de resistencias en serie y en paralelo.

Tema 14: Campo magnético

- Imanes y polos magnéticos.
- Fuerza ejercida por un campo magnético.
- Movimiento de una carga puntual en un campo magnético.

Tema 15: Fuentes de campo magnético

- Campo magnético creado por una carga puntual en movimiento.
- Campo magnético creado por corrientes eléctricas: ley de Biot y Savart.
- Ley de Ampère.
- Momentos magnéticos atómicos.

Tema 16: Inducción magnética

- Flujo magnético.
- Fuerza electromotriz inducida y ley de Faraday.
- Ley de Lenz.

■ PRÁCTICAS DE LABORATORIO:

- Determinación del índice de refracción.
- Campo magnético creado por conductores.
- Curva característica de una lámpara.
- Determinación de la densidad de un sólido.
- Péndulo de torsión.

V.- COMPETENCIAS

■ GENERALES:

0	CG2:	Reconocer 1	la	importancia	de	la	Ouímica	en	diversos	contextos v	

relacionarla con otras disciplinas.

o CG3: Continuar sus estudios en áreas especializadas de Química o en

áreas multidisciplinares.

o CG7: Reconocer y analizar nuevos problemas y planear estrategias para

solucionarlos.

o CG12: Interpretar datos procedentes de observaciones y medidas en el

laboratorio en términos de su significación y de las teorías que las

sustentan.

o CG13: Desarrollar buenas prácticas científicas de medida y

experimentación.

■ ESPECÍFICAS:

o CE23: Utilizar las magnitudes físicas fundamentales y las derivadas, los

sistemas de unidades en que se miden y la equivalencia entre ellos.

Física General

CE23-F1: Explicar fenómenos y procesos relacionados con aspectos básicos de la

Física.

o CE24: Utilizar los principios de la mecánica y las relaciones que se

derivan de ellos, aplicándolos al movimiento de una partícula, y al

de sistemas de partículas y fluidos.

➤ CE24-F1: Describir y utilizar los principios de la mecánica newtoniana y las

relaciones que se derivan de ellos.

CE24-F2: Describir y usar los fundamentos de la mecánica de fluidos.

> CE24-F3: Describir conocimientos básicos relativos al movimiento ondulatorio,

sus características esenciales y el principio de superposición.

o CE25: Aplicar los conceptos de campo, campos eléctrico y magnético a

fenómenos relativos a fuerzas y potenciales electrostáticos,

radiación electromagnética y fenómenos ópticos.

> CE25-F1: Formular y utilizar conocimientos básicos relativos al concepto de

campo, haciendo especial énfasis en los campos eléctrico y magnético.

CE25-F2: Demostrar y utilizar conocimientos básicos sobre la radiación

electromagnética y su espectro y comprender los fundamentos de la

óptica física.

■ TRANSVERSALES:

o **CT2:** Trabajar en equipo.

o CT3 Demostrar razonamiento crítico y autocrítico.

o **CT4:** Adaptarse a nuevas situaciones.

o CT7: Utilizar las herramientas y los programas informáticos que

facilitan el tratamiento de los resultados experimentales.

VI. – HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos	
Clases teóricas	45	55	4	
Seminarios / clases de problemas	30	30	2,4	
Tutorías/Trabajos dirigidos	7	10,5	0,7	
Laboratorios	12	9	0,84	
Preparación de trabajos y exámenes	10	16,5	1,06	
Total	104	121	9	

Física General

VII.- METODOLOGÍA

- 1. Clases presenciales de teoría: el alumno deberá entregar al profesor un cuestionario por tema antes de que tengan lugar las clases magistrales destinadas a cada tema. De esta forma el contenido a tratar en clase no será completamente nuevo para los alumnos. Al comienzo de cada tema se expondrán el contenido, orden y objetivos principales de dicho tema. Al finalizar cada tema se hará un breve resumen de los contenidos más relevantes y se plantearán nuevos objetivos que permitirán interrelacionar contenidos ya estudiados con los del resto de la asignatura y otras asignaturas afines.
- 2. **Seminarios / Clases presenciales de problemas**: se propondrá al alumno una relación de problemas/ejercicios con el objetivo de que intente su resolución previa a las clases presenciales, donde se llevará a cabo su resolución. Además, se propondrá al alumno la exposición en clase de la resolución de algunos problemas/ejercicios, debatiéndose sobre el procedimiento de resolución, el resultado y el significado de este último.
- 3. **Tutorías**: estarán dedicadas a la resolución de problemas por parte de los alumnos. El profesor hará de tutor y supervisará el trabajo de los alumnos.
- 4. **Actividades dirigidas**: estarán destinadas a potenciar el desarrollo del trabajo autónomo. El alumno (o grupo de alumnos) deberá resolver varios ejercicios en horas no presenciales. Además, el alumno deberá preparar y exponer en clase algún trabajo breve sobre los contenidos de la asignatura.
- 5. **Controles periódicos:** permitirán evaluar de forma continuada los progresos del alumno en la asignatura.
- 6. **Prácticas de laboratorio:** posibilitarán que los alumnos aprendan el método científico. Realizando y analizando determinados experimentos, tendrán que verificar si las hipótesis de partida son ciertas. Además, aprenderán a tratar de un modo matemático los errores cometidos en la experimentación.

VIII.- BIBLIOGRAFÍA

■ BÁSICA:

- O Tipler, Paul A.; Mosca, Gene: "Física para la ciencia y la tecnología", 5ª ed., Ed. Reverté, 2005. En la actualidad existen dos ediciones, una en 2 volúmenes y otra en 6 volúmenes.
- o Sears, F. W.; Zemansky, M. W.; Young, H. D.; Freedman, R. A.: "Física universitaria I y II", Pearson, México, 2004.
- o Rex, A.; Wolfson, R.; "Fundamentos de física", Pearson Educación, España, 2011.

■ COMPLEMENTARIA:

- o Serway, Raymond A.; Beichner, Robert J.: "Física", Vol I y II, 5ª ed., Ed. McGraw-Hill/Interamericana de México, 2001.
- o Giancoli, Douglas C.: "Física para Universitarios", Vol. I y II., Editorial Alhambra Mexicana.

Física General

IX.- EVALUACIÓN

La asignatura se puede aprobar por cuatrimestres, guardándose los aprobados de éstos, incluido el laboratorio, hasta septiembre. En cada cuatrimestre se realizarán:

- Un examen Control, "C", a mitad del cuatrimestre.
- Un examen Parcial, "P", al final del cuatrimestre.
- Una <u>Evaluación Continua</u>, "<u>EC</u>", basada en entrega de problemas, pruebas cortas sobre entregables, realización de trabajos, tutorías-control, participación y preguntas en clase...

La Calificación Final de la asignatura, "CF", vendrá dada por:

$$CF = 0.85.A + 0.15.L$$

donde:

• L = 0.5.M + 0.5.ExL

L: calificación total del Laboratorio

M: calificación de la memoria de las prácticas de Laboratorio

ExL: calificación del examen de Laboratorio

• A es la media aritmética de las calificaciones obtenidas en cada cuatrimestre, "B", y se evalúa para cada uno de ellos de la siguiente manera:

$$B = Ex + 0.3.EC\left(\frac{10 - Ex}{10}\right)$$

$$con \qquad Ex = P + 0.2.C \left(\frac{10 - P}{10}\right)$$

Ex: calificación de los exámenes P: calificación del examen Parcial C: calificación del examen Control

EC: calificación de Evaluación Continua

- Todas las calificaciones son sobre 10.
- Condiciones necesarias para superar la asignatura:
 - L≥5
 - A ≥ 5
 - P ≥ 4
 - $ExL \ge 4$
 - M ≥ 4

Además:

- $C \ge 4$ para que compute en la fórmula de calificación de los exámenes (Ex)
- Para todos aquellos alumnos que no aprueben por cuatrimestres, se realizará un <u>examen Final</u> tanto en junio como en septiembre. El examen final constará de dos partes (primer parcial y segundo parcial). La nota que se obtenga en cada una de éstas partes se introducirá en la fórmula de "Ex" en el lugar que ocupa "P".

Física General

- Es posible compensar <u>entre cuatrimestres</u> siempre y cuando se obtenga una calificación en ellos, "B", superior a 4. No se guardan compensables para el examen Final de septiembre (sí se guardan para el Final de junio).

PLANIFICACIÓN DE ACTIVIDADES – CRONOGRAMA

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN	
1. Sistemas de unidades y vestaves	Clases Teoría	1.5	1	1ª Semana	1ª Semana	
1: Sistemas de unidades y vectores	Clases Problemas	1	1	1 Semana		
2: Cinemática de una partícula	Clases Teoría	1.5	1	2ª Semana	2ª Semana	
	Clases Problemas	1	1	2 Semana		
3: Dinámica de una partícula. Leyes de Newton	Clases Teoría	3	1	3ª Semana	4ª Semana	
5. Dinamica de una particula. Leyes de Newton	Clases Problemas	2	1	3 Semana	4 Semana	
4: Trabajo y energía	Clases Teoría	4.5	1	5 ^a Semana	7ª Semana	
4. Trabajo y energia	Clases Problemas	3	1	3 Semana		
5: Sistema de partículas I: momento lineal y colisiones	Clases Teoría	3	1	8ª Semana	9ª Semana	
3. Sistema de particulas 1. momento finear y consiones	Clases Problemas	2	1	o Semana	9 Scilialia	
6: Sistema de partículas II: momento angular y rotación	Clases Teoría	3	1	10° Semana	11 ^a Semana	
o. Sistema de particulas 11. momento angular y rotación	Clases Problemas	2	1	10 Semana	11 Semana	
7: Fluidos	Clases Teoría	4.5	1	12ª Semana	14 ^a Semana	
7. Filliuos	Clases Problemas	3	1	12 Schiana	14 Schiana	
8: Movimiento oscilatorio	Clases Teoría	1.5	1	15ª Semana	15ª Semana	
6. Woviniento oscilatorio	Clases Problemas	1	1	13 Semana	13 Schlaha	
9: Movimiento ondulatorio	Clases Teoría	4.5	1	16 ^a Semana	18ª Semana	
7. 1910 9 IIII CHU UHUUIAUU IU	Clases Problemas	3	1	10 Semana	10 Semana	

Física General

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN	
10: Propiedades de la luz	Clases Teoría	3	1	19ª Semana	20ª Semana	
10. I ropicuaties de la fuz	Clases Problemas	2	1	19 Semana		
11: Campo eléctrico	Clases Teoría	4.5	1	21ª Semana	23ª Semana	
11. Campo ciccurco	Clases Problemas	3	1	21 Semana	25 Semana	
12: Potencial eléctrico y energía electrostática	Clases Teoría	3	1	24 ^a Semana	25° Semana	
12. I otencial electrico y energia electrostatica	Clases Problemas	2	1	24 Semana	23 Schiana	
13: Corriente eléctrica y circuitos de corriente continua	Clases Teoría	2	1	26 ^a Semana	27ª Semana	
13. Corriente electrica y circuitos de corriente continua	Clases Problemas	1.5	1	20 Semana	27 Semana	
14: Campo magnético	Clases Teoría	1.5	1	27 ^a Semana	28ª Semana	
14. Campo magnetico	Clases Problemas	1	1	27 Semana	28" Semana	
15. Eventes de campo magnético	Clases Teoría	1.5	1	28° Semana	29ª Semana	
15: Fuentes de campo magnético	Clases Problemas	1	1	28 Semana	29" Semana	
16: Inducción magnética	Clases Teoría	2.5	1	29ª Semana	30 ^a Semana	
10. Induction magnetica	Clases Problemas	1.5	1	29 Semana	oo semana	
	Tutorías programadas*	7	3	Semanas 3, 6, 10), 15, 18, 23 y 28	

^{*} Las tutorías programadas están sujetas a posibles modificaciones según la planificación conjunta del curso.

Física General

RESUMEN DE LAS ACTIVIDADES

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total
Clases de teoría	CE23-F1, CE24- F1, CE24-F2, CE24-F3, CE25 -F1, CE25-F2	Exposición de conceptos teóricos.	Toma de apuntes.	Calificación de las respuestas realizadas por escrito a preguntas relacionadas con los conceptos teóricos explicados.	45	55	100
Seminarios / Clases de problemas	CG7 CE23 CE24 CE25-F1 CE25-F2	Aplicación de la teoría a la resolución de ejercicios y problemas.	Toma de apuntes. Realización de ejercicios. Formulación de preguntas y dudas.	Calificación de las respuestas (planteamiento y resultado) realizadas por escrito para la resolución de ejercicios prácticos y problemas numéricos.	30	30	60
Tutorías / Actividades dirigidas	CG7, CE23, CE24, CE25-F1, CE25-F2, CT2, CT3	Ayuda al alumno a dirigir su estudio con explicaciones y recomendaciones bibliográficas. Elaboración y propuesta de trabajos.	Consulta al profesor sobre las dificultades conceptuales y metodológicas que encuentra al estudiar la materia. Elaboración por escrito de trabajos individuales.	Participación del alumno y valoración del trabajo.	7	10,5	17.5
Laboratorios	CG12, CG13, CT2, CT3, CT4, CT7	Explicación de la metodología experimental y de análisis y presentación de resultados científicos.	Toma y análisis de datos durante las sesiones de laboratorio. Elaboración de memorias. Realización de examen específico del laboratorio.	Calificación de las memorias de laboratorio. Calificación del examen del laboratorio.	12	9	21
Exámenes	CG7, CT4	Propuesta, vigilancia y corrección del examen. Calificación del alumno.	Preparación y realización.	Calificación del examen.	10	16,5	26.5