

Guía Docente: FÍSICA

FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2013-2014

I.- IDENTIFICACIÓN

NOMBRE DE LA ASIGNATURA: Física NÚMERO DE CRÉDITOS: 9

CARÁCTER: Formación Básica

MATERIA: Física MÓDULO: Básico

TITULACIÓN: Grado de Ingeniería Química

SEMESTRE/CUATRIMESTRE: Anual (primer curso)
DEPARTAMENTO/S: Física de Materiales

(Facultad de Ciencias Físicas)

PROFESOR/ES RESPONSABLE/S:

Grupo A							
Teoría Seminario Tutoría Profesora: ANA URBIETA QUIROGA Departamento: Física de Materiales, Facultad de Ciencias Física 126 e-mail: anaur@fis.ucm.es							
	Grupo B						
Teoría Seminario Tutoría Profesora: Departamento: Despacho: e-mail:		PATRICIA CRESPO DEL ARCO Física de Materiales, Facultad de Ciencias Físicas 113 patricia.crespo@fis.ucm.es					

II.- OBJETIVOS

■ OBJETIVO GENERAL

Los objetivos que persigue la enseñanza de la asignatura de *Física* son que el alumno adquiera:

- Los conocimientos de Física requeridos por las enseñanzas del resto de la carrera, más los que resulten necesarios para respetar la estructura lógica propia de la disciplina y para adaptarse a la formación previa del alumno.
- La capacidad de aplicar dichos conocimientos, concretada en la adquisición de las aptitudes necesarias para, ante casos particulares, poder:
 - Identificarlos con los modelos teóricos.
 - Reconocer las variables físicas relevantes al fenómeno descrito.
 - Aplicar las leyes y principios generales.
 - Interpretar las condiciones físicas específicas y formularlas cuantitativamente.
 - Adquirir hábitos de experimentación.

 Adquirir hábitos de interpretación y análisis, valorando resultados e identificando las implicaciones y relaciones que contengan.

Se pretende dotar al estudiante de:

- (1) Capacidad instrumental para asimilar las disciplinas de la carrera que se apoyan en la materia de la asignatura.
- (2) Capacidad de aplicar los modelos teóricos de la materia de la asignatura en contextos reales y de valorar críticamente los resultados de la aplicación.
- (3) Rigor, agilidad y hábito en el uso de la metodología científico-técnica propia de la materia de la asignatura para la formación posterior y para el ejercicio profesional.

■ OBJETIVOS ESPECÍFICOS

Entre los objetivos específicos se pueden destacar los siguientes:

- Tener un conocimiento claro de las magnitudes físicas fundamentales y derivadas y de las unidades empleadas.
- Consolidar los conocimientos sobre los principios de la Mecánica de Newton.
- Relacionar las magnitudes trabajo y energía y saber resolver problemas atendiendo a criterios puramente energéticos.
- Adquirir los conocimientos básicos relativos al concepto de campo, haciendo énfasis en los campos eléctrico y magnético y también en las fuerzas y potenciales electrostáticos relacionados con los producidos por los iones y dipolos moleculares.
- Aplicar el concepto de campo al estudio del campo eléctrico producido por cargas eléctricas y al estudio del campo magnético producido por cargas en movimiento.
- Estudiar el comportamiento de cargas y corrientes eléctricas en el interior de campos eléctricos y magnéticos.
- Estudiar las ondas mecánicas y electromagnéticas como portadoras de energía y cantidad de movimiento.
- o Conocer la radiación electromagnética y el espectro electromagnético.
- o Comprender los fundamentos de la óptica física, en particular los fenómenos de interferencia y difracción de las ondas.

III.- CONOCIMIENTOS PREVIOS Y RECOMENDACIONES

■ CONOCIMIENTOS PREVIOS:

Es conveniente que los alumnos que se matriculen en esta asignatura hayan cursado estudios de Física y Matemáticas en el último año de Bachillerato, ya que es necesario dominar con soltura los conocimientos de estas asignaturas. Asimismo, es conveniente que el alumno posea conocimientos de cálculo vectorial y cálculo diferencial e integral.

■ RECOMENDACIONES:

Física

IV.- CONTENIDOS

■ BREVE DESCRIPCIÓN DE LOS CONTENIDOS:

Magnitudes, unidades y análisis dimensional. Mecánica y leyes de Newton. Trabajo y energía. Sistemas de partículas. Fluidos. Movimiento oscilatorio y ondulatorio: ondas mecánicas y ondas electromagnéticas. Campo y potencial eléctrico. Campo magnético e inducción magnética. Óptica ondulatoria.

■ PROGRAMA:

PRIMER PARCIAL

Tema 1: Sistemas de unidades y vectores

- Magnitudes. Sistemas de unidades.
- Análisis dimensional.
- Vectores: definición y sistemas de referencia.
- Operaciones con vectores.
- Componentes cartesianas de un vector. Vector unitario.

Tema 2: Cinemática. Dinámica de una partícula. Leyes de Newton

- Cinemática.
- Leyes de Newton.
- Tipos de fuerza más importantes.
- Impulso de una fuerza.
- Dinámica del movimiento circular: componentes de la fuerza.

Tema 3: Trabajo y energía

- Trabajo.
- Potencia.
- Energía cinética.
- Energía potencial: campos de fuerzas conservativos.
- Principio de conservación de la energía mecánica.
- Fuerzas no conservativas: principio de conservación de la energía.
- Teorema del trabajo-energía.
- Discusión de las curvas de energía potencial.

Tema 4: Sistema de partículas I: momento lineal y colisiones

- Centro de masas (CM). Cálculo del CM de sistemas de partículas discretos.
- Movimiento de traslación del CM del sistema de partículas.
- Conservación del momento lineal.
- Energía de un sistema de partículas: conservación de la energía.
- Colisiones.

Tema 5: Sistemas de partículas II: momento angular y rotación

- Movimiento de rotación del CM del sistema de partículas: momento de una fuerza, momento de inercia y momento angular.
- Dinámica de la rotación del sistema de partículas.
- Conservación del momento angular.
- Energía cinética de rotación.

Guía Docente:

Física

Tema 6: Fluidos

- Presión en un punto de un fluido.
- Viscosidad.
- Fluidos en movimiento:
 - o Principio de conservación de la materia: ecuación de continuidad.
 - o Principio de conservación de la energía mecánica: ecuación de Bernouilli.

Tema 7: Movimiento oscilatorio

- Definición del movimiento armónico simple (MAS).
- Fuerza elástica: ley de Hooke.
- Ecuación general de un MAS. Parámetros que definen un MAS.
- Energía potencial, cinética y mecánica del MAS.
- Algunos sistemas oscilantes: objeto colgado de un muelle vertical y el péndulo simple.

SEGUNDO PARCIAL

Tema 8: Movimiento ondulatorio

- Definición de onda. La función de onda.
- Tipos de ondas.
- Velocidad de las ondas. La ecuación de onda.
- Ondas armónicas.
- Ondas y Barreras.
- Principio de superposición de ondas.
- Interferencia de ondas armónicas.
- Ondas estacionarias.

Tema 9: Campo eléctrico

- Carga eléctrica.
- Conductores y aislantes.
- Ley de Coulomb.
- El campo eléctrico.
- Líneas de campo eléctrico.
- Movimiento de cargas puntuales en campos eléctricos.
- Dipolos eléctricos.
- Flujo eléctrico.
- Ley de Gauss. Aplicaciones para el cálculo del campo eléctrico.
- Carga y campo en la superficie de los conductores.

Tema 10: Potencial eléctrico y energía electrostática

- Energía potencial electrostática. Potencial eléctrico.
- Potencial y líneas de campo eléctrico.
- Potencial debido a sistemas de cargas puntuales.
- Determinación del campo eléctrico a partir del potencial. Relación general entre el campo y el potencial.
- Cálculo del potencial para distribuciones continuas de carga.
- Superficies equipotenciales. Ruptura dieléctrica.
- Condensadores.
- Almacenamiento de la energía eléctrica.
- Dieléctricos.

Tema 11: Corriente eléctrica y circuitos de corriente continua

- Corriente eléctrica y movimiento de cargas.
- Ley de Ohm y resistencia.
- Energía eléctrica y potencia eléctrica.
- Fuerza electromotriz en un circuito.
- Combinaciones de resistencias en serie y en paralelo.

Tema 12: Campo magnético

- Imanes y polos magnéticos.
- Fuerza ejercida por un campo magnético.
- Movimiento de una carga puntual en un campo magnético.

Tema 13: Fuentes de campo magnético

- Campo magnético creado por una carga puntual en movimiento.
- Campo magnético creado por corrientes eléctricas: ley de Biot y Savart.
- Ley de Ampère.
- Momentos magnéticos atómicos.

Tema 14: Inducción magnética

- Flujo magnético.
- Fuerza electromotriz inducida y ley de Faraday.
- Ley de Lenz.

Tema 15: Propiedades de la luz

- Ondas electromagnéticas. Espectro electromagnético.
- Espectros de luz.
- Fuentes luminosas. Absorción, dispersión y emisión estimulada.
- Propagación de la luz. Principios de Huygens y Fermat.
- Reflexión y refracción.
- Fenómenos de interferencia y difracción.

V.- COMPETENCIAS

■ GENERALES:

o CG1: Utilizar conceptos de materias básicas y tecnológicas que le

capacite para el aprendizaje autónomo de nuevos métodos y

teorías y para abordar nuevas situaciones.

■ ESPECÍFICAS:

o CE2: Utilizar los conceptos básicos sobre las leyes generales de la

mecánica, campos y ondas y electromagnetismo y aplicarlos a la

resolución de problemas propios de la ingeniería.

CE2-F1: Distinguir entre magnitudes escalares, vectoriales y tensoriales.

CE2-F2: Resolver problemas de estática de fluidos.

➤ CE2-F3 Calcular circuitos eléctricos y sus componentes.

CE2-F4: Explicar el concepto de campo magnético.

Guía Docente:

> CE2-F5: Recordar las propiedades electromagnéticas macroscópicas de un

Física

material.

CE2-F6: Describir los fundamentos de la óptica física y el funcionamiento

de los instrumentos ópticos básicos.

■ TRANSVERSALES:

o **CT1:** Demostrar capacidad de análisis y síntesis.

o CT7: Trabajar en equipo demostrando capacidad para las relaciones

interpersonales.

o CT10: Integrar los conocimientos adquiridos y aplicarlos a la resolución

de problemas reales.

o **CT11:** Aprender de forma autónoma.

VI. – HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos	
Clases teóricas	60	65	5	
Seminarios	15	20	1,4	
Tutorías/Trabajos dirigidos	7	10,5	0,7	
Laboratorios	12	9	0,84	
Preparación de trabajos y exámenes	10	16,5	1,06	
Total	104	121	9	

VII.- METODOLOGÍA

- Clases presenciales de teoría: Al comienzo de cada tema se expondrán el contenido, orden y objetivos principales de dicho tema. Al finalizar cada tema se hará un breve resumen de los contenidos más relevantes y se plantearán nuevos objetivos que permitirán interrelacionar contenidos ya estudiados con los del resto de la asignatura y otras asignaturas afines.
- 2. Clases presenciales de problemas: se propondrá al alumno una relación de problemas/ejercicios con el objetivo de que intente su resolución previa a las clases presenciales, donde se llevará a cabo su resolución. Además, se propondrá al alumno la exposición en clase de la resolución de algunos problemas/ejercicios, debatiéndose sobre el procedimiento de resolución, el resultado y el significado de este último.
- 3. **Tutorías**: estarán dedicadas a la resolución de problemas por parte de los alumnos y en grupos pequeños. El profesor hará de tutor y supervisará el trabajo de los alumnos.

- 4. **Actividades dirigidas**: estarán destinadas a potenciar el desarrollo del trabajo autónomo. El alumno (o grupo de alumnos) deberá resolver varios ejercicios en horas no presenciales.
- 5. **Prácticas de laboratorio:** posibilitarán que los alumnos aprendan el método científico. Realizando y analizando determinados experimentos, tendrán que verificar si las hipótesis de partida son ciertas. Además, aprenderán a tratar de un modo matemático los errores cometidos en la experimentación.

VIII.- BIBLIOGRAFÍA

■ BÁSICA:

- o Tipler, Paul A.; Mosca, Gene: "*Física para la ciencia y la tecnología*", 5ª ed., Ed. Reverté (2005). En la actualidad existen dos ediciones, una en 2 volúmenes y otra en 6 volúmenes.
- o Sears, F. W.; Zemansky, M. W.; Young, H. D.; Freedman, R. A.: "Física universitaria I y II", Pearson, México, 2004.

■ COMPLEMENTARIA:

- o Serway, Raymond A.; Beichner, Robert J.: "Física", Vol I y II, 5ª ed., Ed. McGraw-Hill/Interamericana de México, 2001.
- o Giancoli, Douglas C.: "Física para Universitarios", Vol. I y II., Editorial Alhambra Mexicana.

IX.- EVALUACIÓN

Las tutorías dirigidas y las prácticas de laboratorio serán obligatorias. Para poder realizar el examen final será necesario que el alumno haya participado en el 70% de las actividades presenciales. Las calificaciones estarán basadas en la puntuación absoluta sobre 10 puntos y de acuerdo con la escala establecida en el RD 1125/2003. La calificación final tendrá en cuenta los siguientes porcentajes, que se mantendrán en todas las convocatorias:

■ EXÁMENES ESCRITOS:

80%

Los exámenes constarán de cuestiones y problemas sobre los contenidos impartidos durante el curso en las clases teóricas y seminarios.

■ ACTIVIDADES DIRIGIDAS (TRABAJOS):

10%

Se valorará un trabajo propuesto y presentado por escrito, así como la resolución de algunos problemas planteados en clase, y realizados tanto en grupo como de forma individual.

■ LABORATORIOS:

10%

PLANIFICACIÓN DE ACTIVIDADES – CRONOGRAMA

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN
 Sistemas de unidades y vectores Cinemática. Dinámica de una partícula. Leyes de 	Clases Teoría y problemas	10	1-2	1ª Semana	4ª Semana
Newton	Tutoría programada*	1	4	3ª Semana	
3: Trabajo y energía	Clases Teoría y problemas	10	1-2	5ª Semana	8ª Semana
3. Trabajo y chergia	Tutoría programada	1	4	6ª Semana	
4: Sistema de partículas I: momento lineal y colisiones	Clases Teoría y problemas	10	1-2	9ª Semana	12ª Semana
5: Sistema de partículas II: momento angular y rotación	Tutoría programada	1	4	9 ^a y 12 ^a Semanas	
6: Fluidos	Clases Teoría y problemas	5	1-2	13ª Semana	14ª Semana
7: Movimiento oscilatorio	Clases Teoría y problemas	5	1-2	15ª Semana	16 ^a Semana
8: Movimiento ondulatorio	Tutoría programada	1	4	16ª Semana	
9: Campo eléctrico 10: Potencial eléctrico y energía electrostática	Clases Teoría y problemas	20	1-2	17ª Semana	24ª Semana
11: Corriente eléctrica y circuitos de corriente continua	Tutoría programada	1	4	20ª Se	emana
12: Campo magnético 13: Fuentes de campo magnético 14: Inducción magnética	Clases Teoría y problemas	10	1-2	25ª Semana	28ª Semana
15: Propiedades de la luz	Clases Teoría y problemas	5	1-2	29ª Semana	30ª Semana
13. I Topicuaues de la luz	Tutoría programada	1	4	30ª Semana	

^{*} Las tutorías programadas están sujetas a posibles modificaciones según la planificación conjunta del curso.

RESUMEN DE LAS ACTIVIDADES

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total	C (%)
Clases de teoría	CG1 CE2-F1, CE2-F4, CE2-F5, CE2-F6	Exposición de conceptos teóricos.	Toma de apuntes.	Calificación de las respuestas realizadas por escrito a preguntas relacionadas con los conceptos teóricos explicados	60	65	125	
Seminarios	CE2 CE2-F2 CE2-F3	Aplicación de la teoría a la resolución de ejercicios y problemas.	Toma de apuntes. Realización de ejercicios. Formulación de preguntas y dudas.	Calificación de las respuestas (planteamiento y resultado) realizadas por escrito para la resolución de ejercicios prácticos y problemas numéricos.	15	20	35	
Tutorías/ Actividades dirigidas	CT1, CT7, CT10, CT11	Ayuda al alumno a dirigir su estudio con explicaciones y recomendaciones bibliográficas. Elaboración y propuesta de trabajos.	Consulta al profesor sobre las dificultades conceptuales y metodológicas que encuentra al estudiar la materia. Elaboración por escrito de trabajos individuales.	Participación del alumno y valoración del trabajo.	7	10,5	17,5	10
Laboratorios	CT1, CT7	Explicación de la metodología experimental y de análisis y presentación de resultados científicos.	Toma y análisis de datos durante las sesiones de laboratorio. Elaboración de memorias. Realización de examen específico del laboratorio.	Calificación de las memorias de laboratorio. Calificación del examen del laboratorio.		9	21	10
Exámenes	CT1, CT10	Propuesta, vigilancia y corrección del examen. Calificación del alumno	Preparación y realización.		10	16,5	26,5	80

P: Presenciales; NP: no presenciales (trabajo autónomo); C: calificación