

QUÍMICA GENERAL

FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2016-2017

Química General

I.- IDENTIFICACIÓN

NOMBRE DE LA ASIGNATURA: **Química General**

NÚMERO DE CRÉDITOS: 12

CARÁCTER: Formación básica **MATERIA:** Química General **MÓDULO:** Materias Básicas TITULACIÓN: Grado en Química **SEMESTRE/CUATRIMESTRE: Anual (primer curso) DEPARTAMENTO/S:** Química Analítica

Química Física I Química Inorgánica I Química Orgánica I

PROFESOR/ES RESPONSABLE/S:

ÁNGEL GUTIÉRREZ ALONSO **Profesor:**

Coordinador de la Química Inorgánica I **Departamento:** asignatura

QA-229A Despacho:

alonso@quim.ucm.es e-mail:

Grupo A					
1er Cuatrimestre Profesora: SUSANA CAMPUZANO RUIZ Departamento: Química Analítica Despacho: QA-402 e-mail: susanacr@ucm.es					
2º Cuatrimestre	M ^a . LUZ MENA FERNÁNDEZ Química Analítica QB-342F <u>mariluz@ucm.es</u>				
		Grupo B			
Profesora: SUSANA GARCÍA MARTÍN Departamento: Química Inorgánica I Despacho: QA-120 e-mail: sgmartin@quim.ucm.es					
2º Cuatrimestre	Profesor: Departamento: Despacho: e-mail:	RODRIGO GONZÁLEZ PRIETO Química Inorgánica I QA-136B rgprieto@quim.ucm.es			
2º Cuatrimestre	Profesor: Departamento: Despacho: e-mail:	DAVID ÁVILA BRANDE Química Inorgánica I QA-117 <u>avilad@quim.ucm.es</u>			

Química General

Grupo C					
1 ^{er} y 2º Cuatrimestres	Profesor: Departamento: Despacho: e-mail:	ÁNGEL GUTIÉRREZ ALONSO Química Inorgánica I QA-229A <u>alonso@quim.ucm.es</u>			
		Grupo D			
1 ^{er} Cuatrimestre	ALBERTINA CABAÑAS POVEDA Química Física I QA-276 a.cabanas@quim.ucm.es				
2º Cuatrimestre	Profesor: Departamento: Despacho: e-mail:	ALFREDO LAINEZ FERRANDO Química Física I QB-236 alfredo.lainez@quim.ucm.es			
	11	Grupo E			
Profesora: BEATRIZ LORA MAROTO Departamento: Química Orgánica I Despacho: QA-338 e-mail: belora@quim.ucm.es					
2º Cuatrimestre	Profesora: Departamento: Despacho: e-mail:	SILVIA ORTEGA GUTIÉRREZ Química Orgánica QB-348A siortega@quim.ucm.es			
Grupo F					
Profesora: MARÍA CRUZ MORENO BONDI Departamento: Química Analítica Despacho: QB-438 e-mail: mcmbondi@quim.ucm.es					
2º Cuatrimestre	Profesor: Departamento: Despacho: e-mail:	JOSE LUIS LUQUE GARCÍA Química Analítica QB-439 jlluque@ucm.es			

II.- OBJETIVOS

■ OBJETIVO GENERAL

Se trata de introducir al alumno los conceptos básicos de la Ciencia Química, aportándole las herramientas adecuadas para afrontar los contenidos del Módulo Fundamental.

En esta asignatura se presentan las bases que permitirán al alumno comprender la naturaleza de la materia, con una concepción microscópica, pasando de los átomos a las

Química General

moléculas y de éstas a los estados de agregación (sólidos, gases y líquidos), introduciendo las fuerzas intermoleculares. Se aportarán los fundamentos de cinética química y termodinámica necesarios para poder comprender las reacciones y equilibrios químicos, así como la termodinámica involucrada en las transiciones de fase y disoluciones. Se introducirán conceptos básicos de electroquímica, de química nuclear y de la química de los grupos funcionales orgánicos.

Un objetivo general, de vital importancia, es el de fomentar en el alumno interés por el aprendizaje de la Química e instruirle en el papel que ésta desempeña en la naturaleza y en la sociedad actual.

■ OBJETIVOS ESPECÍFICOS

- O Conocer los fundamentos de la mecánica cuántica y su aplicación para interpretar la estructura de los átomos.
- O Entender la construcción de la Tabla Periódica de los elementos y como extraer de ella información sobre las propiedades de los elementos químicos.
- O Conocer los distintos tipos de enlace químico: covalente, iónico y metálico, y las teorías más simples empleadas para describirlos.
- O Establecer relaciones entre las propiedades de las sustancias y la naturaleza del enlace que presentan.
- O Comprender la naturaleza de los distintos estados de agregación de la materia y las fuerzas intermoleculares que los originan.
- Conocer la estructura y propiedades más relevantes para los gases, líquidos y sólidos.
- O Comprender los conceptos básicos de la cinética química, su metodología y la aplicación al estudio de reacciones simples.
- O Conocer los factores que afectan a la estabilidad de los núcleos atómicos.
- Conocer los conceptos básicos de la química orgánica: estructura y nomenclatura de los compuestos orgánicos, grupos funcionales más importantes y tipos de isomería.
- O Comprender los principios básicos de la termodinámica.
- O Entender la termodinámica de la reacción química.
- O Aplicar los conceptos termodinámicos a las transiciones de fase.
- Comprender el concepto de equilibrio químico y los factores que afectan al estado de equilibrio.
- Aplicar los conceptos de equilibrio químico a sistemas ácido-base, redox y de precipitación.
- O Conocer los conceptos básicos de la electroquímica de pilas galvánicas.

III.- CONOCIMIENTOS PREVIOS Y RECOMENDACIONES

■ CONOCIMIENTOS PREVIOS:

Los requeridos en la etapa educativa anterior.

■ RECOMENDACIONES:

Se recomienda tener conocimientos básicos de nomenclatura química y de magnitudes y unidades físico-químicas.

Es recomendable que el alumno posea cierto bagaje en Física y Matemáticas.

Química General

IV.- CONTENIDOS

■ BREVE DESCRIPCIÓN DE LOS CONTENIDOS:

Estructura atómica. Tabla periódica de los elementos. Enlace químico. Estados de agregación. Química Nuclear. Introducción al estudio de los compuestos orgánicos. Cinética y termodinámica de las reacciones químicas. Equilibrio químico. Equilibrios en disolución.

■ PROGRAMA:

Bloque I. Estructura atómica y enlace

Tema 1: Estructura atómica

Radiación electromagnética. Espectros atómicos. Teoría cuántica. Efecto fotoeléctrico. Modelo atómico de Bohr. Dualidad onda-partícula. Principio de incertidumbre. Mecánica ondulatoria. Orbitales atómicos. Espín electrónico. Átomos polielectrónicos. Carga nuclear efectiva. Configuraciones electrónicas.

Tema 2: Tabla Periódica de los elementos. Propiedades periódicas

Clasificación de los elementos. Configuraciones electrónicas y tabla periódica. Tamaño de los átomos y los iones. Energía de ionización. Afinidad electrónica.

Tema 3: El enlace químico: teorías y tipos de enlace

Tipos de enlace químico. Enlace covalente: orden de enlace, longitud y energía de enlace. Enlaces polares. Electronegatividad. Estructuras de Lewis. Carga formal. Resonancia. Geometría molecular. Teoría RPECV. Teoría de enlace de valencia: hibridación de orbitales atómicos, enlaces σ y π . Teoría de orbitales moleculares: moléculas diatómicas homo y heteronucleares. Enlace metálico: modelo de bandas. Enlace iónico: energía reticular y ciclo de Born-Haber.

Bloque II. Estados de agregación. Cinética química. Compuestos orgánicos

Tema 4: Estados de agregación de la materia

Fuerzas intermoleculares. Estado sólido. Estado líquido. Estado gaseoso. Ecuación de estado de un gas ideal. Mezcla de gases ideales. Teoría cinético-molecular de los gases. Gases reales.

Tema 5: Cinética química

Velocidad de una reacción química. Ecuaciones cinéticas. Molecularidad y orden de reacción. Teoría de colisiones. Energía de activación. Mecanismos de reacción. Catálisis.

Tema 6: Química nuclear

Radiactividad. Isótopos. Reacciones nucleares. Velocidad de desintegración. Estabilidad nuclear. Fisión y fusión nucleares.

Química General

Tema 7: Química de los grupos funcionales orgánicos

Estructura y nomenclatura básica de los hidrocarburos y de los compuestos con grupos funcionales más importantes. Concepto y tipos de isomería. Isomería estructural: cadena, posición y función. Tipos de proyecciones. Estereoisomería.

Bloque III. Termodinámica

Tema 8: Termodinámica química

1. Primer Principio

Propósito y alcance de la Termodinámica. Funciones de estado. Trabajo en sistemas hidrostáticos. Calor y medida del calor: capacidades caloríficas. Escala Kelvin o termodinámica de temperaturas. Función energía interna. Primer principio de la Termodinámica. Entalpía. Cambios adiabáticos para un gas ideal.

2. Segundo y Tercer Principios. Funciones Termodinámicas

Procesos espontáneos. Entropía. Segundo principio de la Termodinámica. Desigualdad de Clausius. Interpretación molecular de la entropía. Tercer principio. Entropía molar estándar. Energía Helmholtz y energía Gibbs. Condiciones de equilibrio y espontaneidad.

3. Entalpía, entropía y energía libre del cambio químico

Entalpía de reacción. Estados estándar. Ley de Hess. Entalpías de formación estándar. Entropías de reacción estándar. Energía libre de reacción. Energía Gibbs estándar de formación.

Tema 9: Equilibrio multifásico de un componente

Fases y transiciones de fase. Presión de vapor. Variación de la presión de vapor con la temperatura. Diagramas de fase de sustancias puras.

Tema 10: Disoluciones y sus propiedades físicas

Tipos de disoluciones. Concentración de una disolución. Fuerzas intermoleculares y procesos de disolución. Solubilidad de los gases: ley de Henry. Propiedades coligativas. Mezclas líquidas binarias. Destilación. Azeótropos.

Tema 11: Equilibrio químico

Naturaleza del equilibrio químico. Equilibrio y ley de acción de masas: constante de equilibrio. Constante de equilibrio termodinámica para gases ideales. Extensión de una reacción: cociente de reacción. Relación entre la energía Gibbs estándar y la constante de equilibrio. Dependencia de la constante de equilibrio con la temperatura. Modificación de las condiciones de equilibrio.

Bloque IV. Equilibrios en disolución

Tema 12: Equilibrio ácido-base y de solubilidad

Teoría protónica de Brönsted y Lowry. Ácidos y bases de Lewis. Autoprotolisis. Escala de pH. Fuerza de ácidos y bases. Constantes de acidez y basicidad. Hidrólisis. Efecto del ion común. Disoluciones reguladoras. Valoraciones ácido base. Producto de solubilidad. Efecto del ion común. Disolución de precipitados.

Química General

Tema 13: Electroquímica

Semirreacciones redox. Ajuste de reacciones. Celdas electroquímicas. Potencial de electrodo. Potenciales estándar. Ecuación de Nernst. Pilas de concentración. Baterías y pilas de combustible. Electrolisis. Corrosión.

V.- COMPETENCIAS

GENERALES:

0	CG1	Reconocer y valorar los procesos químicos en la vida cotidiana.
0	CG5	Explicar y aplicar los hechos esenciales, conceptos, principios y
		teorías relacionadas con las áreas de la Química.

o **CG6** Analizar y resolver problemas cualitativos y cuantitativos.

en los equilibrios en disolución.

ESPECÍFICAS:

0	CE1-QG1	Aplicar el lenguaje químico a la designación y formulación de				
		compuestos químicos.				
0	CE2-QG1	Ajustar las reacciones químicas y realizar cálculos				
		estequiométricos.				
0	CE2-QG2	Aplicar a las reacciones químicas los conceptos relativos a				
		composición de la materia y los principios termodinámicos y				
		cinéticos básicos.				
0	CE3-QG1	Utilizar los conceptos de equilibrio químico con especial énfasis				

■ TRANSVERSALES:

0	CT2	Trabajar en equipo.
0	CT3	Demostrar razonamiento crítico y autocrítico.
0	CT4	Adaptarse a nuevas situaciones.
0	CT8	Comunicarse en español utilizando los medios audiovisuales más
		habituales.

VI.- RESULTADOS DEL APRENDIZAJE

Una vez superada esta asignatura, el alumno debe ser capaz de:

Tema 1

- 1. Aplicar la dualidad onda-partícula al comportamiento de las partículas subatómicas.
- 2. Explicar el origen del modelo actual de estructura atómica.
- 3. Describir los orbitales atómicos en el átomo de hidrógeno y su relación con los números cuánticos para el electrón aplicando los principios básicos de la mecánica cuántica.
- 4. Explicar el origen de los espectros atómicos.
- 5. Describir los factores que afectan a la energía de un electrón en un átomo polielectrónico.
- 6. Escribir la configuración electrónica del estado fundamental de cualquier elemento.

Química General

Tema 2

- 7. Identificar y nombrar los elementos de la Tabla Periódica.
- 8. Relacionar la configuración electrónica del estado fundamental de cualquier elemento con su posición en la Tabla Periódica.
- 9. Predecir la variación del radio atómico, energía de ionización y afinidad electrónica a lo largo de un grupo y de un período de la Tabla Periódica.

Tema 3

- 10. Predecir los tipos fundamentales de enlace en función de los átomos constituyentes.
- 11. Predecir la forma de moléculas sencillas utilizando la teoría de repulsión de electrones de la capa de valencia.
- 12. Aplicar la teoría de enlace de valencia para determinar el esquema de hibridación del átomo central en moléculas sencillas.
- 13. Explicar la estructura electrónica de una molécula en términos de enlaces sigma y pi, utilizando la teoría de enlace de valencia.
- 14. Construir e interpretar un diagrama de niveles de energía de una molécula diatómica.
- 15. Aplicar el concepto de banda para explicar las principales propiedades de los metales.
- 16. Utilizar el modelo iónico del enlace para explicar las propiedades de estas sustancias.
- 17. Calcular magnitudes termodinámicas en compuestos iónicos utilizando el ciclo de Born-Haber.

Tema 4

- 18. Identificar los diferentes tipos de fuerzas intermoleculares.
- 19. Clasificar sustancias en función de sus puntos de fusión o ebullición a partir de la fortaleza de las interacciones existentes en las mismas.
- 20. Relacionar las propiedades características de los diferentes tipos de sólidos con la naturaleza de sus partículas constituyentes.
- 21. Determinar propiedades físicas de un gas ideal a partir de la ecuación de estado.
- 22. Explicar el comportamiento de los gases ideales a partir de la teoría cinética.
- 23. Aplicar la ecuación de estado de un gas real y definir los factores que determinan la desviación del comportamiento ideal.

Tema 5

- 24. Definir los términos velocidad de reacción, orden de reacción, ecuación elemental y molecularidad.
- 25. Determinar el orden de una reacción, su ley de velocidad y la constante de velocidad de reacción a partir de datos experimentales.
- 26. Calcular la concentración, tiempo o constante de velocidad, usando una ley de velocidad integrada, para reacciones de orden cero, uno o dos.
- 27. Deducir una ley de velocidad a partir de un mecanismo de reacción.
- 28. Utilizar la ecuación de Arrhenius para calcular energías de activación o constantes de velocidad.
- 29. Justificar cómo la teoría de colisiones y la teoría del complejo activado determinan la dependencia de la velocidad de una reacción con la temperatura.
- 30. Describir la acción de los catalizadores y sus tipos principales.

Tema 6

31. Describir diferentes ejemplos de reacciones nucleares y los tipos de radiación producidos en las mismas.

Química General

- 32. Identificar las condiciones de estabilidad nuclear y predecir las desintegraciones más probables de los núcleos radiactivos.
- 33. Calcular la energía liberada durante una reacción nuclear como consecuencia del defecto de masa.
- 34. Explicar los procesos de fisión y fusión nuclear y señalar ejemplos de núclidos susceptibles de realizar dichos procesos.
- 35. Describir los efectos de la radiación sobre la materia y las aplicaciones prácticas más importantes de los radioisótopos.

Tema 7

- 36. Identificar los principales grupos funcionales.
- 37. Nombrar y formular compuestos orgánicos sencillos.
- 38. Reconocer los distintos tipos de isomería
- 39. Decidir si un compuesto orgánico es quiral.
- 40. Distinguir y nombrar isómeros geométricos y ópticos.
- 41. Dibujar en el plano moléculas tridimensionales mediante proyecciones de Fischer y de Newman.

Tema 8

- 42. Definir conceptos termodinámicos básicos: tipos de sistemas, variables intensivas y extensivas, procesos termodinámicos, funciones de estado.
- 43. Calcular el trabajo efectuado por un gas ideal en diferentes tipos de procesos termodinámicos.
- 44. Evaluar la transferencia de calor asociada con cambios de temperatura y estado.
- 45. Enunciar el primer principio de la termodinámica y utilizarlo para hacer cálculos en transformaciones sencillas.
- 46. Definir energía interna, entalpía y capacidades caloríficas, y aplicar estos conceptos a los cambios físicos.
- 47. Describir los experimentos de Joule y Joule-Thompson y explicar sus aplicaciones.
- 48. Describir el comportamiento de una máquina térmica que opere según el ciclo de Carnot, u otro ciclo sencillo, y representar en un diagrama PV las distintas etapas del ciclo.
- 49. Enunciar el segundo principio de la termodinámica, y explicar la dirección de los cambios naturales.
- 50. Explicar la escala termodinámica de temperaturas.
- 51. Definir la entropía y calcular variaciones de entropía en procesos de gases ideales y en cambios de fase.
- 52. Interpretar la entropía desde un punto de vista molecular.
- 53. Enunciar el tercer principio de la termodinámica.
- 54. Definir la entropía molar estándar.
- 55. Definir los potenciales termodinámicos A (energía Helmholtz) y G (energía Gibbs).
- 56. Aplicar la variación de energía Gibbs para predecir la espontaneidad de un proceso.
- 57. Calcular cambios de energía en las reacciones químicas.
- 58. Predecir el sentido espontáneo de una reacción química a partir de los valores de entalpía y entropía de reacción.
- 59. Calcular la entalpía, entropía y energía libre de una reacción química a partir de los datos termodinámicos de formación de las especies intervinientes.

Toma 9

- 60. Distinguir entre sistemas homogéneos y heterogéneos y definir el concepto de fase.
- 61. Enunciar la regla de las fases y aplicarla a casos sencillos.

Química General

- 62. Describir las características de las transiciones de fase entre sólidos, líquidos y gases.
- 63. Explicar el concepto de presión de vapor y utilizar la ecuación de Clausius-Clapeyron para calcular su variación con la temperatura.
- 64. Dibujar el diagrama de fases de una sustancia pura e identificar las diferentes zonas, líneas y puntos característicos del mismo.
- 65. Utilizar el diagrama de fases para explicar los cambios de comportamiento de una sustancia pura.

Tema 10

- 66. Describir los distintos tipos de disoluciones.
- 67. Utilizar los diferentes modos de expresar la concentración de una disolución.
- 68. Explicar el proceso de disolución mediante las fuerzas intermoleculares implicadas.
- 69. Explicar la solubilidad de gases y los factores de que depende.
- 70. Explicar las propiedades coligativas de disoluciones y emplearlas para cálculos sencillos.
- 71. Explicar el comportamiento de una mezcla binaria de dos líquidos volátiles mediante la ley de Raoult.
- 72. Explicar el concepto de azeótropo.
- 73. Aplicar los conceptos termodinámicos a la interpretación de fenómenos de la vida cotidiana.

Tema 11

- 74. Explicar la naturaleza del equilibrio químico.
- 75. Usar la constante de equilibrio para estudiar cuantitativamente los equilibrios químicos.
- 76. Calcular el cociente de una reacción y utilizar dicho valor para predecir el sentido de desplazamiento de la misma.
- 77. Utilizar la relación entre energía Gibbs y constante de equilibrio para predecir la extensión de una reacción.
- 78. Calcular la variación de la constante de equilibrio con la temperatura.
- 79. Predecir el sentido de desplazamiento de un equilibrio químico y calcular la nueva composición en el equilibrio, cuando se produce una perturbación del mismo.

Tema 12

- 80. Identificar ácidos y bases de Brönsted-Lowry y de Lewis en una reacción química.
- 81. Predecir las fuerzas relativas de ácidos y bases en disolución acuosa a partir del valor de sus constantes de disociación.
- 82. Calcular el pH y la concentración de las especies en el equilibrio en disoluciones acuosas de ácidos y bases.
- 83. Describir el concepto de disolución reguladora y sus propiedades.
- 84. Explicar cómo preparar una disolución reguladora y calcular la variación de pH al adicionar ácidos o bases fuertes a la misma.
- 85. Calcular el pH en las distintas zonas de una curva de valoración de ácido (base) fuerte con base (ácido) fuerte o de ácido (base) débil con base (ácido) fuerte.
- 86. Señalar los métodos más comunes para la medida del pH y justificar el comportamiento de indicadores en una valoración.
- 87. Calcular la solubilidad y el producto de solubilidad en equilibrios sencillos de precipitación.
- 88. Predecir la precipitación de una sal a partir de las concentraciones de sus iones en disolución.

Química General

89. Explicar la variación de solubilidad con los diferentes factores que afecten a la misma.

Tema 13

- 90. Ajustar reacciones de oxidación-reducción.
- 91. Escribir el diagrama de una pila y la reacción química implicada.
- 92. Calcular el potencial de una pila a partir de los potenciales de reducción tabulados.
- 93. Predecir el sentido espontáneo de una reacción redox a partir de los potenciales de reducción de las semirreacciones correspondientes.
- 94. Describir los tipos de electrodos más comunes.
- 95. Calcular la variación del potencial de una reacción redox con la concentración utilizando la ecuación de Nernst.
- 96. Predecir los productos de la electrolisis de sustancias sencillas a partir de los potenciales de reducción.
- 97. Utilizar las leyes de Faraday en cálculos de electrolisis.
- 98. Describir el funcionamiento de los principales tipos de pilas y baterías.
- 99. Describir los aspectos básicos de la corrosión.

VII.- HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos/ horas	
Clases teóricas	64	86	6/150	
Seminarios	36	39	3/75	
Tutorías/Trabajos dirigidos	12	25	1,5/37	
Preparación de trabajos y exámenes	8	30	1,5/38	
Total	120	180	12/300	

VIII.- METODOLOGÍA

Los contenidos de la asignatura se presentan a los alumnos en clases presenciales, divididas en dos tipos:

Las denominadas **clases presenciales de teoría** se impartirán al grupo completo, y en ellas se darán a conocer al alumno los contenidos fundamentales de la asignatura. Al comienzo de cada tema se expondrán claramente el programa y los objetivos principales del mismo.

En las **clases presenciales de problemas** se resolverán ejercicios y cuestiones que ejemplifiquen los contenidos desarrollados en las clases de teoría. Periódicamente se suministrará al alumno una relación de dichos problemas/ejercicios con el objetivo de que intente su resolución previa a las clases. Algunos de estos ejercicios serán recogidos por el profesor para su evaluación.

Como complemento al trabajo personal realizado por el alumno, y para potenciar el desarrollo del trabajo en grupo, se propondrá como actividad dirigida la elaboración y

Química General

presentación de un trabajo o alguna otra actividad alternativa sobre los contenidos de la asignatura.

El profesor programará **tutorías** sobre actividades diversas que le permitan detectar las fortalezas y debilidades en el trabajo cotidiano de los alumnos. También estarán disponibles tutorías para alumnos que de manera individual deseen resolver las dudas que surjan durante el estudio.

Se utilizará el Campus Virtual para permitir una comunicación fluida entre profesores y alumnos y como instrumento para poner a disposición de los alumnos el material que se utilizará en las clases tanto teóricas como de problemas.

IX.- BIBLIOGRAFÍA

■ BÁSICA:

- o Petrucci, R. H., Herring, F. G., Madura, J. D. y Bissonette, C.: "Química General. Principios y aplicaciones modernas", 10ª ed., Prentice Hall, 2011.
- o Atkins, P. y Jones, L.: "Principios de Química", 5ª ed., Panamericana, 2012.

■ COMPLEMENTARIA:

- o Chang, R.: "Química", 9ª ed., McGraw-Hill, 2007.
- o Casabó i Gispert, J.: "Estructura Atómica y Enlace Químico", Reverté, 1999.
- Soto Cámara, J. L.: "Química Orgánica vol. 1. Conceptos básicos", 2ª ed. Revisada y aumentada, Síntesis, 2003.
- Silva, M. y Barbosa, J.: "Equilibrios iónicos y sus aplicaciones analíticas", Síntesis, 2008.

X.- EVALUACIÓN

El rendimiento académico del alumno y la calificación final de la asignatura se computarán de forma ponderada, atendiendo a los siguientes porcentajes, que se mantendrán en todas las convocatorias.

EXÁMENES ESCRITOS:

70%

Convocatoria de junio: Se realizarán dos exámenes parciales y un examen final, comunes a todos los grupos. Los exámenes parciales aprobados serán liberatorios en la convocatoria de junio. Los alumnos que superen los dos exámenes parciales no estarán obligados a presentarse al examen final. Para superar ambos exámenes parciales se requerirá una nota mínima de 4 sobre 10 en cada examen parcial y un promedio de 5 sobre 10 entre ambos exámenes. Los exámenes constarán de preguntas sobre aplicación de conceptos aprendidos durante el curso y cuestiones prácticas relacionadas (CG5, CG6, CE1-QG1, CE2-QG1, CE2-QG2, CE3-QG1). En el examen final será requisito imprescindible, para promediar con las restantes actividades, obtener una calificación mínima de 4 sobre 10.

Los alumnos que hayan obtenido una calificación en el examen de 5 o más puntos, pero cuya calificación final sea inferior a 5, mantendrán la nota del examen para la

Química General

convocatoria de septiembre. En esta sólo deberán mejorar la calificación del trabajo personal, como se describe en el apartado siguiente.

<u>Convocatoria de septiembre</u>: se realizará un único examen final manteniendo los mismos criterios de la convocatoria de junio.

■ TRABAJO PERSONAL:

20%

La evaluación del trabajo de aprendizaje individual realizado por el alumno se hará teniendo en cuenta tres factores (todas las competencias):

- Destreza del alumno en la resolución de los problemas y ejercicios propuestos, que se recogerán periódicamente.
- Valoración del trabajo en las clases presenciales de problemas.
- Evaluación de las tutorías en grupo-

Aquellos alumnos que deseen mejorar, para la convocatoria de septiembre, su calificación en este apartado deberán resolver y entregar, con antelación a la realización del examen, un conjunto de problemas y ejercicios propuestos por el profesor. Posteriormente, el alumno deberá proceder a la resolución de uno o dos ejercicios, elegidos por el profesor, de entre todos los entregados.

■ ACTIVIDADES DIRIGIDAS (TRABAJOS):

10%

Los alumnos desarrollarán en grupo, y expondrán en una clase presencial, un trabajo entre los propuestos por el profesor. El profesor valorará el trabajo y la claridad en la exposición y en las respuestas (CG5, CT2, CT3, CT4, CT8).

■ ASISTENCIA Y PARTICIPACIÓN ACTIVA EN LAS CLASES:

La asistencia a todas las actividades presenciales será **obligatoria**, y la participación activa del alumno en todas las actividades docentes se valorará positivamente en la calificación final (CT3, CT4, CT8).

Las calificaciones de las actividades previstas para la evaluación de la asignatura se comunicarán a los estudiantes con la antelación suficiente antes de la realización del examen final, para que puedan planificar adecuadamente el estudio de ésta u otras asignaturas. En especial, las notas de los exámenes parciales se comunicarán en un plazo máximo de 20 días, salvo en el caso del segundo parcial, en el que el plazo puede ser menor para adaptarse al examen final. En todo caso, se respetará el plazo mínimo de siete días entre la publicación de las calificaciones y la fecha del examen final de la asignatura.

Química General

PLANIFICACIÓN DE ACTIVIDADES – CRONOGRAMA

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN	
Plague I Estaveture atómico y enlace	Clases Teoría	28	1	1ª Semana	9ª Semana	
Bloque I. Estructura atómica y enlace	Clases Problemas/Tutorías	8	1	i Semana		
Bloque II. Estados de agregación. Cinética química.	Clases Teoría	10	1	10 ^a Semana	14ª Semana	
Compuestos orgánicos	Clases Problemas/Tutorías	10	1	10 Semana	14 Sellialia	
Dla arra III. Tarres dinámica	Clases Teoría	16	1	15 ^a Semana	22ª Semana	
Bloque III. Termodinámica	Clases Problemas/Tutorías	16	1	13 Semana		
Dlagra IV. Egyilikuiga on digalyaión	Clases Teoría	10	1	23 ^a Semana	202 C	
Bloque IV. Equilibrios en disolución	Clases Problemas/Tutorías	10	1	25 Semana	28ª Semana	
	Exposición de trabajos	4	1	Semana 26ª		

Química General

RESUMEN DE LAS ACTIVIDADES

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total	C
Clases de teoría	CG1, CG5, CG6, CE1-QG1, CE2- QG1, CE2-QG2, CE3-QG1.	Exposición de conceptos teóricos y planteamiento de cuestiones y nuevos objetivos.	Toma de apuntes. Resolución de cuestiones. Desarrollo de los nuevos objetivos. Formulación de preguntas y dudas.	Calificación de las respuestas realizadas a preguntas relacionadas con los conceptos teóricos.	64	86	150	
Seminarios	CG1, CG5, CG6, CE1-QG1, CE2- QG1, CE2-QG2, CE3-QG1, CT2, CT3, CT4, CT8.	Aplicación de la teoría a la resolución de ejercicios y problemas. Planteamiento de nuevas cuestiones.	Toma de apuntes. Resolución de ejercicios y cuestiones. Formulación de preguntas y dudas.	Calificación de las respuestas (planteamiento y	36	39	75	20%
Tutorías	CG1, CG5, CG6, CE1-QG1, CE2- QG1, CE2-QG2, CE3-QG1, CT2, CT3, CT4, CT8.	Dirección y supervisión del estudio y actividades del alumno. Planteamiento de cuestiones. Resolución de dudas.	Consulta al profesor sobre las dificultades conceptuales y metodológicas que encuentra al estudiar la materia. Planteamiento de cuestiones y respuesta a las propuestas por el profesor.	resultado) realizadas para la resolución de ejercicios prácticos y problemas numéricos.	8	12	20	
Actividades dirigidas	CG5, CT2, CT3, CT4, CT8.	Propuesta y valoración crítica de trabajos.	Cooperación con los compañeros en la elaboración de trabajos. Presentación oral del trabajo corregido.	Valoración del trabajo, de los análisis realizados y de la presentación.	4	13	17	10%
Exámenes	CG5, CG6, CE1- QG1, CE2-QG1, CE2-QG2, CE3- QG1	Propuesta de examen. Vigilancia y corrección. Calificación del alumno.	Preparación y realización.	Corrección y valoración de los exámenes.	8	30	38	70%

P: Presenciales; NP: no presenciales (trabajo autónomo); C: calificación