

INGENIERÍA AMBIENTAL

FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2017-2018

Ingeniería Ambiental

I.- IDENTIFICACIÓN

NOMBRE DE LA ASIGNATURA: Ingeniería Ambiental

NÚMERO DE CRÉDITOS: 6

CARÁCTER: Optativa

MATERIA: Sostenibilidad en la Producción

Ouímica

MÓDULO: Tecnología Química

TITULACIÓN: Grado en Ingeniería Química

SEMESTRE/CUATRIMESTRE: Primero (cuarto curso)
DEPARTAMENTO/S: Ingeniería Química

PROFESOR/ES RESPONSABLE/S:

Grupo A					
Teoría Seminarios Tutorías	Profesor: Departamento: Despacho: e-mail:	FERNANDO MIRADA CORONEL Ingeniería Química QB 535 fmirada@quim.ucm.es			
Teoría Seminario Tutoría	Profesora: Departamento: Despacho: e-mail:	MERCEDES OLIET PALÁ Ingeniería Química QB 544 moliet@quim.ucm.es			
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	CARLOS NEGRO ÁLVAREZ Ingeniería Química QB 532 cnegro@quim.ucm.es			
Teoría Seminario Tutoría	Profesora: Departamento: Despacho: e-mail:	ÁNGELES BLANCO SUÁREZ Ingeniería Química QB502 <u>ablanco@quim.ucm.es</u>			

II.- OBJETIVOS

■ OBJETIVO GENERAL

Proporcionar los conocimientos y habilidades necesarias para desenvolverse con éxito en el desempeño de funciones técnicas en el sector ambiental, introduciendo al alumno en la metodología empleada en el diseño y operación de los procedimientos y equipos empleados para tratar los principales contaminantes, de modo que pueda aplicarla a diferentes situaciones que se presentan en la industria y en las instalaciones destinadas a la gestión y tratamiento de estos materiales y que sea capaz de seleccionar procedimientos, equipos y condiciones de operación.

Ingeniería Ambiental

■ OBJETIVOS ESPECÍFICOS

- o Interpretar y aplicar los requisitos legales que afectan a distintas actividades y que condicionan la obtención de licencias y autorizaciones de carácter ambiental.
- Identificar y cuantificar vertidos y residuos en distintos sectores.
- Identificar y evaluar los procedimientos de reducción, reutilización y reciclado de contaminantes y residuos en distintas instalaciones.
- Conocer las tecnologías empleadas en el tratamiento de aguas residuales de diferente procedencia.
- Conocer los procedimientos de control y tratamiento de residuos, analizando ventajas e inconvenientes de las diferentes tecnologías.
- Conocer las tecnologías de remediación de suelos contaminados, sus aplicaciones y limitaciones.
- Modelar, a partir de un conocimiento fenomenológico, los principales equipos de depuración empleados en las instalaciones industriales.
- Evaluar y seleccionar tecnologías, procedimientos y equipos para tratar emisiones, vertidos, residuos y suelos contaminados.

III.- CONOCIMIENTOS PREVIOS Y RECOMENDACIONES

■ CONOCIMIENTOS PREVIOS:

■ RECOMENDACIONES:

Se recomienda haber cursado las asignaturas *Termodinámica Aplicada*, *Ingeniería de la Reacción Química, Operaciones de Separación y Tecnología del Medio Ambiente*.

IV.- CONTENIDOS

■ BREVE DESCRIPCIÓN DE LOS CONTENIDOS:

Procesos productivos y calidad ambiental. Contaminantes del agua y suelo. Usos del agua en la industria. Métodos de depuración de aguas residuales urbanas. Reutilización de aguas residuales urbanas depuradas. Depuración de aguas residuales industriales. Reducción en origen de residuos. Tecnologías de reutilización, reciclaje y valorización de residuos. Vertido controlado de residuos. Diagnóstico y caracterización de suelos contaminados. Origen y efectos de la contaminación de suelos. Constituyentes y propiedades del suelo en relación con su autodepuración. Recuperación de suelos contaminados.

■ PROGRAMA:

1. Concepto de la Ingeniería Ambiental. Procesos y operaciones unitarias en Ingeniería Ambiental. Indicadores de salud ambiental. Legislación ambiental.

Ingeniería Ambiental

- 2. El ciclo del agua. Generación de aguas residuales: fuentes y características de las aguas residuales.
- 3. Tratamiento de efluentes líquidos. Operaciones y procesos. Revisión de las tecnología de depuración de aguas residuales urbanas. Depuración de aguas industriales. Tratamientos avanzados. Reutilización del agua. Revisión de los tratamiento de lodos.
- 4. Residuos. Residuos urbanos, industriales y radiactivos. Generación, manipulación y transferencia. Minimización.
- 5. Gestión de residuos. Principios de jerarquía. Valorización. Reutilización. Reciclado. Tratamientos biológicos. Tratamientos térmicos. Otros tratamientos. Vertido controlado.
- 6. El suelo. Origen y efectos de la contaminación de suelos. Diagnóstico y caracterización de suelos contaminados. Constituyentes y propiedades del suelo relacionadas con la dinámica y transporte de contaminantes.
- 7. Recuperación de suelos contaminados. Evaluación de riesgos Criterios de selección. Tecnologías de tratamiento.
- 8. Procesos ecoeficientes. Gestión del medio ambiente en la industria.

V.- COMPETENCIAS

■ GENÉRICAS:

o CG1-TQ1: Utilizar conceptos para el aprendizaje autónomo de nuevos

métodos y teorías.

o CG1-TQ2: Diseñar y gestionar procedimientos de experimentación aplicada,

especialmente para la determinación de propiedades termodinámicas y de transporte, y de modelado de fenómenos y sistemas en el ámbito de la ingeniería química, sistemas con flujo de fluidos, transmisión de calor, operaciones de transferencia de

materia, cinética de las reacciones químicas y reactores.

o CG4-TQ1: Aplicar conceptos de biotecnología, transferencia de materia,

operaciones de separación, ingeniería de la reacción química. Diseñar reactores, y evaluar la transformación de materias primas

y recursos energéticos.

o **CG5-TQ1:** Analizar, diseñar, simular y optimizar procesos y productos.

ESPECÍFICAS:

o CE16-SPQ4: Describir los conceptos básicos relativos a la problemática

medioambiental del aire, las aguas, los residuos y los suelos.

o **CE16-SPQ5:** Reconocer y caracterizar sistemas hídricos, residuos y suelos.

o **CE16-SPQ6:** Analizar y describir las tecnologías existentes para el tratamiento y

control de efluentes hídricos.

o CE16-SPQ7: Analizar y describir las tecnologías existentes para la gestión de

residuos y la descontaminación de suelos.

Ingeniería Ambiental

■ TRANSVERSALES:

o **CT1-TQ1:** Desarrollar capacidad de análisis y síntesis.

o **CT2-TQ1:** Resolver problemas en el área de la Tecnología Química.

o CT4-TQ1: Comunicarse en español utilizando los medios audiovisuales

habituales.

o CT5-TQ1: Consultar, utilizar y analizar fuentes bibliográficas en el área de la

Tecnología Química.

o CT5-TQ2: Consultar, utilizar y analizar bases de datos especializadas y de

recursos accesibles a través de Internet.

o CT6-TQ1: Utilizar herramientas y programas informáticos para calcular,

simular y aproximar.

o **CT8-TQ1:** Demostrar capacidad para el razonamiento crítico y autocrítico.

o **CT11-TQ1:** Aprender de forma autónoma.

o CT12-TQ1: Desarrollar sensibilidad hacia la repercusión social y

medioambiental de las soluciones ingenieriles.

VI. – HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos
Clases teóricas	35	65	4
Seminarios	10	15	1
Tutorías/Trabajos dirigidos	4	6	0,4
Preparación de trabajos y exámenes	6	9	0,6
Total	55	95	6

VII.- METODOLOGÍA

Los contenidos de la asignatura se presentan a los alumnos en clases presenciales, divididas en dos tipos:

Las denominadas clases presenciales de teoría se impartirán al grupo completo, y en ellas se dará a conocer al alumno el contenido de la asignatura. Al comienzo de cada tema se expondrá claramente el contenido y objetivos principales de dicho tema. Al final del tema se hará un breve resumen de los contenidos más relevantes y se plantearán nuevos objetivos que permitirán interrelacionar contenidos ya estudiados. Durante la exposición de contenidos se propondrán cuestiones que ejemplifiquen los conceptos desarrollados o que sirvan de introducción a nuevos contenidos. Para facilitar la labor de seguimiento por parte del alumno de las clases presenciales se le

Ingeniería Ambiental

proporcionará la parte que se estime necesaria del material docente utilizado por el profesor, bien en fotocopia o en el Campus Virtual. La exposición de cada uno de los temas se hará haciendo uso de la pizarra y de software de presentaciones, simulación, cálculo numérico, etc.

- Los **seminarios** se impartirán al grupo completo. Tendrán una doble finalidad. Primero, profundizar en algunos aspectos concretos de la asignatura tratados con un carácter más general en las clases de teoría. En segundo lugar, se introducirá al estudiante en la búsqueda bibliográfica específica y en la evaluación y discusión de artículos técnicos de actualidad relacionados con la ingeniería ambiental.
- En las actividades dirigidas los alumnos deberán realizar algún trabajo a lo largo del curso, sobre temas propios de la asignatura, que se evaluarán como actividades de trabajo autónomo o no presencial. El objetivo general de estos trabajos es que los alumnos aprendan a realizar búsquedas bibliográficas para obtener la información necesaria para resolver un problema abierto y orientado hacia la realidad industrial, a analizarla, valorarla y aplicarla. Los trabajos propuestos a cada alumno contienen, además del trabajo bibliográfico, la elaboración del correspondiente informe, incluyendo el análisis e interpretación de información y/o resultados, y las conclusiones. Sería conveniente, si el número de alumnos lo permite, que el alumno presente su trabajo en clase una vez finalizado, respondiendo además a las cuestiones que planteen el profesor y los compañeros.
- Las **tutorías** se programarán de forma individualizada o con grupos reducidos. En ellas se resolverán las dudas planteadas por los alumnos y se discutirán los problemas y las cuestiones aportadas por el profesor relacionadas con el temario de la asignatura, así como casos prácticos concretos.
- Se utilizará el **Campus Virtual** para permitir una comunicación fluida entre profesores y alumnos y como instrumento para poner a disposición de los alumnos el material que se considere necesario del utilizado en las clases tanto teóricas como de problemas. También podrá utilizarse como foro en el que se presenten algunos temas complementarios cuyo contenido, aunque importante en el conjunto de la materia, no se considere oportuno presentarlo en las clases presencial.

VIII.- BIBLIOGRAFÍA

■ BÁSICA:

- o Henry J.G. y Heinke, G.W.: "Ingeniería Ambiental", 2ª Ed., Pearson-México, 1999.
- o Kiely, G.: "Ingeniería Ambiental". 1ª Ed., John Wiley, 2ª Ed., 2000.
- o Corbitt, R.A.: "Manual de Referencia de la Ingeniería Ambiental", Ed. McGraw-Hill, Madrid, 2000.

■ COMPLEMENTARIA:

- o Lee, C.C. y Lin, S.D.: "Handbook of Environmental Engineering Calculations", 2^a Ed., Ed. McGraw-Hill, Madrid, 2007.
- o Hernández, A.: "Manual Saneamiento Uralita: Sistema de Calidad de Saneamiento de Agua", Ed. Paraninfo, Madrid, 2003.

Ingeniería Ambiental

- O Dunnivant, F. M.: "A Basic Introduction to Pollutant Fate and Transport: An Integrated Approach With Chemistry, Modelling, Risk Assessment, And Environmental Legislation", Ed. John Wiley & Sons, 2006.
- o Metcalf y Eddy: "Ingeniería de Aguas Residuales", Ed. McGraw-Hill, Madrid, 3ª Ed., 1995.
- o LaGrega, M.D., Buckingham, P.L. y Evans, J.C. Gestión de residuos tóxicos. Tratamiento, eliminación y recuperación de suelos. Ed.McGraw Hill (1996).
- o Rodríguez, J.J. y Irabien, A. (Ed.): "Los Residuos Peligrosos. Caracterización, Tratamiento y Gestión", Ed. Síntesis, 1999.

IX.- EVALUACIÓN

El rendimiento académico del alumno y la calificación final de la asignatura se computarán de forma ponderada atendiendo a los siguientes porcentajes, que se mantendrán en **todas** las convocatorias:

■ EXÁMENES ESCRITOS:

70 %

Se realizará un examen final, dividido en tres bloques (Aguas, Residuos y Suelos), que contribuirá en un 70% a la nota final. Será necesario obtener una puntuación mínima de 3,0 puntos sobre 10,0 en cada una de las partes del examen final para acceder a la calificación global de la asignatura. Este último criterio se mantendrá para la convocatoria extraordinaria.

■ TRABAJO PERSONAL Y ACTIVIDADES DIRIGIDAS:

30 %

La evaluación del trabajo de aprendizaje individual realizado por el alumno se realizará teniendo en cuenta:

- o La evaluación obtenida en los cuestionarios realizados al finalizar cada seminario.
- o La evaluación del trabajo en grupo desarrollado.
- Valoración del trabajo en las clases presenciales de teoría, de seminarios y en tutorías.

■ ASISTENCIA Y PARTICIPACIÓN ACTIVA EN LAS CLASES:

Para poder acceder a la evaluación global de la asignatura, el estudiante debe haber participado al menos en el 70% de las actividades presenciales de aula (teoría y seminarios y tutorías).

Las calificaciones de las actividades previstas para la evaluación de la asignatura (exámenes parciales, laboratorios, tutorías, entrega de problemas, ...) se comunicarán a los estudiantes con la antelación suficiente antes de la realización del examen final, para que puedan planificar adecuadamente el estudio de ésta u otras asignaturas.

En todo caso, se respetará el plazo mínimo de diez días entre la publicación de las calificaciones y la fecha del examen final de la asignatura.

Ingeniería Ambiental

PLANIFICACIÓN DE ACTIVIDADES – CRONOGRAMA

El programa se desarrollará con el siguiente esquema (los temas están ordenados cronológicamente):

TEMA	ACTIVIDAD	HORAS	GRUPOS
1. Concepto de Ingeniería Ambiental	Clases Teoría	1	1
2. El ciclo del agua	Clases Teoría	4	1
	Clases Teoría	10	1
3. Tratamiento de efluentes líquidos	Clases Seminario	4	1
	Tutoría programada	2	1
4. Residuos	Clases Teoría	4	1
4. Restauos	Clases Seminario	1	1
	Clases Teoría	7	1
5. Gestión de residuos	Clases Seminario	2	1
	Tutoría programada	1	1
6. El suelo	Clases Teoría	3	1
	Clases Teoría	5	1
7. Recuperación de suelos contaminados	Clases Seminario	3	1
	Tutoría programada	1	1
8. Procesos ecoeficientes	Clases Teoría	1	1